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6.3 RECTANGULAR WAVEGUIDE CAVITY RESONATORS
RS E R

Microwave resonators can also be constructed from closed sections of waveguide.

» Because radiation loss from an open-ended waveguide can be significant,
waveguide resonators are usually short circuited at both ends, thus forming a closed
box, or cavity.

»Electric and magnetic energy is stored within the cavity enclosure, and power is
dissipated in the metallic walls of the cavity as well as in the dielectric material that
may fill the cavity.

Main contents:
1) the resonant frequencies for a general TE or TM resonant mode
2) an expression for the unloaded Q of the TE10 mode.



Summary of Results for Rectangular Waveguide
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Resonant Frequencies

The resonant frequencies of this cavity are found
under the assumption that the cavity Is lossless.
Q 1s determined using the perturbation method.

The transverse electric fields (Ex , Ey) of the TEmn

or TMmn rectangular waveguide mode can be
written as

Er{l’. ¥, _'} = {?{1 .T} (A_"‘E._f_ﬁmn—_ + A_Ej'.ﬁ)mﬁ-: )

The propagation constant of the m, nth TE
or TM mode is
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where &k = w. /e, and p and € are the permeability and permittivity of the material filling
the cavity.

=Y

A rectangular cavity resonator,
and the electric field variations

for the TE101 and TE102
resonant modes.
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Applying the condition that E;:=0atz=0
AT = —4~
Then the condition that E; = 0 at z — d leads to the equation
Eix,v.d) = —e(x, y)A12j sin Bund = 0.
The only nontrivial (A+ = 0) solution occurs for
Bund = €, £=1,2,3,...,

which implies that the cavity must be an integer multiple of a half-guide
wavelength long at the resonant frequency.

A resonance wave number for the rectangular cavity can be defined as

i =2+ () + (5




TE,,or TM ., are resonant modes of the cavity, where m, n, | indicate the number
of variations in the standing wave pattern in the X, y, z directions, respectively.
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If b < a < d, the dominant resonant mode (lowest resonant frequency) will be
the TE101 mode, corresponding to the TE10 dominant waveguide mode in a
shorted guide of length Ag/2, and is similar to the short-circuited A/2

transmission line resonator.



Unloaded Q of the TE10 Mode

The total fields for the TE10 resonant mode can be written as
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The stored electric energy is, W, = < f E,E*dv = — E2,
1/, _

] ) _ L
and the stored magnetic energy Is, Wy = % f (HyH} + H.H)dv
V
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Because Z1g = kn/B. with B = Big = VK2 — (w/a)?,
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For small losses we can find the power dissipated in the cavity walls using the
perturbation method.

The power lost in the conducting walls is

&

P, === |H;|?ds,
2 walls

where R; = /wuo/20 1is the surface resistivity of the metallic walls,

and Ht is the tangential magnetic field at the surface of the walls.

R b ra | d b .
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The unloaded Q of the cavity with lossy conducting walls but lossless dielectric can be
found as

2ag W,
Oc =1~
B ﬂjﬁbd:; 1
- 4Aw2R; [(2ab/d?) + (bdja?) + (2a/2d) + (d/2a)]
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Next we compute the power lost in the dielectric material that may fill the cavity.

A lossy dielectrichas € =€’ — je’ = €.€0(1 — j tan ).

The power dissipated in the dielectric is,
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The unloaded Q of the cavity with a lossy dielectric filling, but with perfectly
conducting walls, is
2w W, € 1

{jﬂr = = — = .
- Py e tan &

When both wall losses and dielectric losses are present, the total power loss is Pc +
Pd , so the total unloaded Q as

. (1 . 1)—1
<0~ Qc Qa:." -




EXAMPLE 6.3 DESIGN OF A RECTANGULAR CAVITY RESONATOR

A rectangular waveguide cavity 1s made from a piece of copper WR-187 H-band
waveguide, with g = 4.755 cm and & = 2.215 cm. The cavity 1s filled with poly-
ethylene (e, = 2.25, tand = 0.0004). If resonance 1s to occur at / = 5 GHz, find
the required length, . and the resulting unloaded O for the £ =1 and ¢ = 2

resonant modes.

Solution o rnf JE

- - -1
The wave number K Is - = 157.08 m™".

the required length for resonance (m =1, n = 0)

£

d=— .
V"ﬂ'z _ {Efﬁf}l

T
forft =1, d= = 2.20 cm.

V (157.08)% — (:/0.04755)2

for{ =2, d=2(2.20) = 4.40 cm.
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From Example 6.1, the surface resistivity of copper at 5 GHz 1s R; = 1.84 x
102 €. The intrinsic impedance is

-
= 251.3 €2.
€y

N =

The Q due to conductor loss only is

fort =1, Q.= 8,403,
fort =2, Q.= 11,898.

the Q due to dielectric loss only is, for both 1 =1 and I= 2,

1 1
;= = — 2500.
Qd tand  0.0004

Then total unloaded Qs are,

—1
1 1
for £ =1, = = 1927,
Qo ( 83403 * 2500)

—1
1 1
for £ = 2. _ — 2065.
ol Qo ( 1898 T 2500)



6.4 CIRCULAR WAVEGUIDE CAVITY RESONATORS

A cylindrical cavity resonator can be constructed from a section of circular
waveguide shorted at both ends.

Because the dominant circular waveguide mode is the TE11 mode, the
dominant cylindrical cavity mode is the TE111 mode.

Circular cavities are often used for microwave frequency meters.
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TABLE 3.5 Summary of Results for Circular Waveguide
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Resonant Freguencies

ZA Z A

¢=1
| >
E, E,

A cylindrical resonant cavity, and the electric field distribution for resonant modes
withé = 1or £ = 2,
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the transverse electric fields (Ep, Ep) of the TEnm or TMnm circular
waveguide mode can be written as

Ei(p,¢,z) =é(p,¢) (AT e IFm= —I—A_efﬁ“*”z).

where &(p, ¢) represents the transverse variation of the mode, and 4" and 4~ are arbitrary
amplitudes of the forward and backward traveling waves. The propagation constant of the

TEnm mode Is,

o P\’
= k2= _
Brum \/ ( ; )

while the propagation constant of the TMnm mode s,

13??}?? — ‘ff."l;rg — (p:ﬂ )E.
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where k = w /e,
In order to have E; =0 at z = 0, d, we must choose AT = —4~. and 4™ sin B,
d = 0.

Bumd = €, for £=0,1,2,3,....
which implies that the waveguide must be an integer number of half-guide

wavelengths long.
The resonant frequency of the TEnm mode Is

4

N Pim ), [t7)
Jrm 27 HrEr'\/( a ) +(d) 1

the resonant frequency of the TMnm mode is

o C Pnm - F_"T ’
= (2 (5
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(MHz - cm)?

(2a 17,

f‘?”ﬁ}x & o
5 5 108 /“4@' N Thus the dominant TE mode is the TE111 mode,
pay £y while the dominant TM mode is the TM010
/ mode.
10 x 108 ,/
5 108 LA
0 2 4 b

(2a/d)?

Resonant mode chart for a cylindrical cavity.
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Unloaded Q of the TEnm Mode

From the fact that A+ = —A—, the fields of the TEnm mode can be written as

! E.-' Z
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where n = /u/e and Hy = =2 AT,
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Because the time-average stored electric and magnetic energies are equal, the total
stored energy IS

€ d 2 a i )
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The power loss in the conducting walls is
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the unloaded Q of the cavity with imperfectly conducting walls but lossless dielectric is

no\"
. ] —
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R 1+ ' 2 + p’ 1— ’ 3
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the frequency dependence of Qc is 10

given by k/Rs , which varies as 1/\ f;
this gives the variation in Qc for a given
resonant mode and cavity shape.

R/

the TEO11 mode has an unloaded Q
significantly higher than that of the lower |
order TE111, TM010, or TM111 mode. - Mo

| | | | |
D'%.U 0.5 1.0 1.5 2.0 2.5 3.0
2ald
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To compute the unloaded Q due to dielectric loss, we must compute the power dissipated
In the dielectric. Thus,

1 o
Pd:—fJ~E*ffu:
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the unloaded Q due to dielectric loss is
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Qa = e tand’
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EXAMPLE 6.4 DESIGN OF A CIRCULAR CAVITY RESONATOR

A circular cavity resonator with = 2a 1s to be designed to resonate at 5.0 GHz
in the TEp;; mode. If the cavity 1s made from copper and 1s Teflon filled (e, =
2.08, tan s = 0.0004), find 1ts dimensions and unloaded Q.

Solution

k —151.0m™!

C 2nfon/E  2m(5 % 107)4/2.08

c 3 x 108

the resonant frequency of the TEO11 mode is

- \/(p?); ).

with py, = 3.832. Then, since d = 2a

27 for14/€r Po1 a2
:,I-" = - — 1 .
c ‘ \/( a T (a’)




Solving for a gives

e+ @2 JERI T @Ry
= k = 151.0

so we have d = 5.48 cm.

= 2.74 cm.

(1

The surface resistivity of copper at 5 GHz 1s R, = 0.0184 €. Then from
(6.57). with n =0, m = £ = 1. and d = 2a. the unloaded QO due to conductor
losses 18

ka) nad 1 I
0, = 1N =21 29390,
4(py)* Rs lad/2 + (Ba/py)°1  2Rs
04 = — L 3500
9= tans _ 0.0004
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Homework

6.9 A rectangular cavity resonator 1s constiucted from a 2.0 cm length of aluminum X-band waveguide.
The cavity 1s air filled. Find the resonant frequency and unloaded O of the TEg; and TE > resonant
modes.

6.1> An air-filled rectangular cavity resonator has its first three resonant modes at the frequencies 5.2, 6.5,
and 7.2 GHz. Find the dimensions of the cavity.
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