

Lecture 14

MOSFET I-V CHARACTERISTICS

Outline

- 1. MOSFET: cross-section, layout, symbols
- 2. Qualitative operation
- 3. *I-V* characteristics

Key questions

- How can carrier inversion be exploited to make a transistor?
- How does a MOSFET work?
- How does one construct a simple first-order model for the current-voltage characteristics of a MOSFET?

1. MOSFET: layout, crosssection, platform

Key elements:

- inversion layer under gate (depending on gate voltage)
- heavily-doped regions reach underneath gate =->inversion layer electrically connects source and drain
- 4-terminal device: body voltage important

- **Two complementary devices:**
- n-channel device (n-MOSFET) on p-substrate
 - uses electron inversion layer
- p-channel device (p-MOSFET) on n-substrate
 - uses hole inversion layer

(a) n-channel MOSFET

(b) p-channel MOSFET

Qualitative Operation

•Drain Current (I_d : proportional to inversion charge and the velocity that the charge travels from source to drain

•*Velocity* :proportional to electric field from drain to source

•*Gate-Source Voltage* (V_{GS} controls amount of inversion charge that carries the current

•*Drain-Source Voltage* (V_{DS} : controls the electric field that drifts the inversion charge from the source to drain

Want to understand the relationship between the drain current in the MOSFET as a function of gate-to-source voltage and drain-to-source voltage.

Initially consider source tied up to body (substrate)

Three regimes of operation:

- MOSFET:
 - $-V_{GS} < V_T$, with $V_{DS} \ge 0$
- Inversion Charge=0
- V_{DS} drops across drain depletion region
- $I_D = 0$

Linear or Triode regime:

Electrons drift from source to drain \rightarrow electrical current!

$$V_{GS} \uparrow \Rightarrow |Q_N| \uparrow \Rightarrow I_D \uparrow \qquad V_{DS} \ll V_{GS} - V_T$$
$$V_{DS} \uparrow \Rightarrow E_y \uparrow \Rightarrow I_D \uparrow \qquad V_{DS} \ll V_{GS} - V_T$$

Saturation Region $V_{DS} > V_{GS} - V_T$ $V_{GS} > V_T, V_{GD} < V_T \Longrightarrow V_{DS} > V_{GS} - V_T$

 I_D is independent of V_{Ds} : $I_D = I_{dsat}$ Electric field in channel cannot increase with V_{Ds}

3. *I-V* Characteristics (Assume $V_{SB}=0$)

Geometry of problem:

for

General expression of channel current

Current can only flow in the y-direction, Total channel flux:

$$I_{y} = W \bullet Q_{N}(y) \bullet v_{y}(y)$$

Drain current is equal to minus channel current:

$$I_{D} = -W \bullet Q_{N}(y) \bullet v_{y}(y)$$

Rewrite in terms of voltage at channel location y, V(y):

• If electric field is not too high (velocity saturation doesn't occur):

$$v_{y}(y) = -\mu_{n} \bullet E_{y}(y) = \mu_{n} \bullet \frac{dV}{dy}$$

• For $Q_N(y)$, use charge-control relation at location y:

$$Q_{N}(y) = -C_{ox} \left[V_{GS} - V(y) - V_{T} \right]$$
$$V_{GS} - V(y) \ge V_{T}$$

All together the drain current is given by:

$$I_{D} = W \bullet \mu_{n} C_{ox} \left[V_{GS} - V(y) - V_{T} \right] \bullet \frac{dV(y)}{dy}$$

Solve by separating variables:

$$I_D d_y = W \bullet \mu_n C_{ox} \left[V_{GS} - V(y) - V_T \right] \bullet dV$$

Integrate along the channel in the linear regime subject the boundary conditions :

Then:

$$I_D \int_0^L dy = W \bullet \mu_n C_{ox} \int_0^{V_{DS}} \left[V_{GS} - V(y) - V_T \right] \bullet dV$$

Resulting in:

$$I_D \left[y \right]_0^L = I_D L = W \bullet \mu_n C_{ox} \left[\left(V_{GS} - \frac{V}{2} - V_T \right) V \right]_0^{V_{DS}}$$

$$I_D = \frac{W}{L} \bullet \mu_n C_{ox} \left[V_{GS} - \frac{V_{DS}}{2} - V_T \right] \bullet V_{DS}$$

for
$$V_{DS} < V_{GS} - V_T$$

For small V_{DS} :

$$I_D \simeq \frac{W}{L} \mu_n C_{ox} \left(V_{GS} - V_T \right) V_{DS}$$

Key dependencies:

 $V_{DS}\uparrow \rightarrow I_D\uparrow$ (higher lateral electric field) $V_{GS}\uparrow \rightarrow I_D\uparrow$ (higher electron concentration) $L\uparrow \rightarrow I_D\downarrow$ (lower lateral electric field) $W\uparrow \rightarrow I_D\uparrow$ (wider conduction channel)

Two important observations

1. Equation only valid if $V_{GS} - V(y) \ge V_T$ at every y. Worst point is y=L, where $V(y) = V_{DS}$, hence, equation is valid if

$$V_{DS} \leq V_{GS} - V_T$$

2. As V_{DS} approaches $V_{GS} - V_T$, the rate of increase of I_D decreases.

To understand why I_D bends over, must understand first : channel *debiasing*!

As *y* increases down the channel, $V(y) \uparrow$, $|Q_N(y)| \downarrow$, and $E_y(y) \uparrow$ (fewer carriers moving faster)

 \Rightarrow inversion layer thins down from source to drain \Rightarrow Local "channel overdrive" reduced closer to drain. $\Rightarrow I_D$ grows more slowly.

$$Q_N(y) = -C_{ox} \left[V_{GS} - V(y) - V_T \right]$$

As V_{DS} \uparrow , channel debiasing more prominent => I_D rises more slowly with V_{DS}

Key conclusions

- The MOSFET is a field-effect transistor:
 - the amount of charge in the inversion layer is controlled by the field-effect action of the gate
 - the charge in the inversion layer is mobile ⇒ conduction possible between source and drain
- In the linear regime:
 - $-V_{GS} \uparrow \Rightarrow I_D \uparrow$: more electrons in the channel
 - $-V_{DS}\uparrow \Rightarrow I_D\uparrow$: stronger field pulling electrons out of the source
- Channel debiasing: inversion layer "thins down" from source to drain \Rightarrow current saturation as V_{DS} approaches:

$$V_{DSsat} = V_{GS} - V_T$$

Drain current saturation

As V_{DS} approaches

$$V_{DSsat} = V_{GS} - V_T$$

increase in E_y compensated by decrease in $|Q_N|$ $\Rightarrow I_D$ saturates when $|Q_N|$ equals 0 at drain end.

Value of drain saturation current:

$$I_{Dsat} = I_{Dlin} \left(V_{DS} = V_{DSsat} = V_{GS} - V_T \right)$$
$$I_{Dsat} = \left[\frac{W}{L} \bullet \mu_n C_{ox} \left(V_{GS} - \frac{V_{DS}}{2} - V_T \right) \bullet V_{DS} \right]_{V_{DS} = V_{GS} - V_T}$$
$$I_{Dsat} = \frac{1}{2} \frac{W}{L} \mu_n C_{ox} \left[\left(V_{GS} - V_T \right) \right]^2$$

Output Characteristics

Transfer characteristics in saturation

What happens when $V_{DS} = V_{GS}^{-}V_T$?

Charge control relation at drain end of channel:

$$Q_n(L) = -C_{ox}(V_{GS} - V_{DS} - V_T) = 0$$

No inversion layer at end of channel??!! ⇒ Pinchoff

Key dependencies of I_{Dsat}

$$I_{Dsat} \propto \left(V_{GS} - V_T\right)^2$$

Drain current at pinchoff: ∞ lateral electric field $\infty V_{DSsat} = V_{GS} V_T$ ∞ electron concentration $\infty V_{GS} V_T$

$$I_{Dsat} \propto \frac{1}{L}$$
$$L \downarrow \rightarrow \left| E_{y} \right| \uparrow$$

What happens when $V_{DS} > V_{GS}^{-}V_T$?

Depletion region separating pinchoff point and drain widens (just like in reverse biased pn junction)

To first order, I_D does not increase past pinchoff:

$$I_D = I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} \left(V_{GS} - V_T \right)^2$$

To second order, electrical channel length affected ("channel length modulation"):

$$I_{DS} \uparrow \Rightarrow L_{channel} \downarrow \Rightarrow I_{D} \uparrow$$
$$I_{D} \propto \frac{1}{L - \Delta L} \simeq \frac{1}{L} \left(1 + \frac{\Delta L}{L} \right)$$

Experimental finding: $\Delta L \propto V_{DS} - V_{DSsat}$

$$\frac{\Delta L}{L} = \lambda \left(V_{DS} - V_{Dsat} \right)$$

Hence:

V

Improved model in saturation:

$$I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} \left(V_{GS} - V_T \right)^2 \left[1 + \lambda \left(V_{DS} - V_{DSsat} \right) \right]$$

2. Backgate characteristics

There is a fourth terminal in a MOSFET: the body. What does the body do?

Body contact allows application of bias to body with respect to inversion layer, V_{BS} . Only interested in $V_{BS} < 0$ (pn diode in reverse bias).Interested in effect on inversion layer \Rightarrow examine for $V_{GS} > V_T$ (keep V_{GS} constant).

Application of $V_{BS} < 0$ increases potential buildup across semiconductor:

$$-2\phi_p \Longrightarrow -2\phi_p - V_{BS}$$

Depletion region must widen to produce required extra field:

Consequences of application of $V_{BS} < 0$:

•
$$-2\phi_p \Longrightarrow -2\phi_p - V_{BS}$$

•
$$|Q_B| \uparrow \Rightarrow x_{d \max} \uparrow$$

• since V_{GS} constant, V_{ox} unchanged

$$\Rightarrow E_{ox}$$
 unchanged

$$\Rightarrow |Q_S| = |Q_G|$$
 unchanged

• $|Q_S| = |Q_n| + |Q_B|$ unchanged, but $|Q_B| \uparrow \Rightarrow |Q_n| \downarrow$ \Rightarrow inversion layer charge is reduced! Application of $V_{BS} < 0$ with constant V_{GS} reduces electron concentration in inversion layer $\Rightarrow V_T^{\uparrow}$

How does V_T change with V_{BS} ?

In V_T formula change $^-2\varphi_p$ to $^-2\varphi_p ^-V_{BS}$:

$$V_T^{GB}\left(V_{BS}\right) = V_{FB} - 2\phi_p - V_{BS} + \frac{1}{C_{ox}}\sqrt{2\varepsilon_s q N_a \left(-2\phi_p - V_{BS}\right)}$$

In MOSFETs, interested in V_T between gate and source:

$$V_{GB} = V_{GS} - V_{BS} \Longrightarrow V_T^{GB} = V_T^{GS} - V_{BS}$$

Then: $V_T^{GS} = V_T^{GB} + V_{BS}$

And:
$$V_T^{GS}(V_{BS}) = V_{FB} - 2\phi_p + \frac{1}{C_{ox}}\sqrt{2\varepsilon_s}qN_a(-2\phi_p - V_{BS}) \equiv V_T(V_{BS})$$

In the context of the MOSFET, V_T is always defined in terms of gate-to-source voltage.

Define backgate effect parameter [units: $V^{1/2}$]:

$$\gamma = \frac{1}{C_{ox}} \sqrt{2\varepsilon_s q N_a}$$

Define $V_{To} = V_T (V_{BS} = 0)$ Zero-bias threshold voltage

Then:
$$V_T(V_{BS}) = V_{To} + \gamma \left(\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_p}\right)$$

Key conclusions

- •*MOSFET in saturation* ($V_{DS} \ge V_{DSsat}$): pinchoff point at drain end of channel
 - electron concentration small, but
 - electrons move very fast;
 - pinchoff point does not represent a barrier to electron flow
- •In saturation, I_D saturates:

$$I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} \left(V_{GS} - V_T \right)^2$$

•But due to channel length modulation, I_{Dsat} increases slightly with V_{DS}

•Application of back bias shifts V_T (backgate effect)

Example: MOSFET as a voltage controlled resistor

The circuit below shows an n-channel MOSFET that is used as voltage-controlled resistor.

(a) Find the sheet resistance of the MOSFET over the range $V_{GS}=1.5$ V to $V_{GS}=4$ V using $u_n=215$ cm²V⁻¹S⁻¹, $C_{ox}=2.3$ fF/um² and $V_{tn}=1$ V.

Fig. an n-channel MOSFET used a voltage controlled resistor

Note that for a gate-source voltage $V_{GS} > V_{Tn} + 0.1V = 1.1V$, the MOSFET operates in the triode region. Since the drain-source voltage is small

$$I_D = \left(\frac{W}{L}\right) \mu_n C_{ox} \left(V_{GS} - V_{Tn}\right) V_{DS} = \frac{1}{R} V_{DS}$$

For a particular value of V_{GS} , I_D is a linear function of V_{DS} and the circuit model for the MOSFET is a resistor. Now we relate R to the sheet resistance

$$R = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{Tn})} = \frac{1}{\mu_n C_{ox} (V_{GS} - V_{Tn})} \left(\frac{L}{W}\right) = R_{\Box} (L/W)$$

$$R_{\Box} \text{ as a function of } V_{GS} \text{ is}$$

$$R_{\Box} = \frac{1}{(215 cm^2 V^{-1} s^{-1}) (2.3 \times 10^{-7} F / cm^2)} \frac{1}{(V_{GS} - 1V)} = \frac{20k\Omega \cdot V}{V_{GS} - 1V}$$

The plot of sheet resistance as a function of V_{GS} with very small V_{DS}

(b) For a particular application, we need to control the resistor between 200 Ω and 1 k Ω for V_{GS}=1.5V to 4 V. How wide should the MOSFET be if the channel length L=1.5 um?

Solution:

We already solved for the sheet resistance in part (a), so we can find the range of sheet resistances for V_{GS} =1.5V to 4V

$$R_{\Box\min} = \frac{20k\Omega \cdot V}{4V - 1V} = 6666.7\Omega \text{ and } R_{\Box\max} = \frac{20k\Omega \cdot V}{(1.5V - 1V)} = 40k\Omega$$

Solving for (W/L) to obtain R_{min} =200 Ω and R_{max} =1 k Ω yields

$$\left(\frac{W}{L}\right)_{\min} = \frac{6666.7\Omega}{200\Omega} = 33.3 \text{ and } \left(\frac{W}{L}\right)_{\max} = \frac{40000\Omega}{1000\Omega} = 40000\Omega$$

(W/L)=33.3 is adopted so the width of the MOSFET should be

$$W = 1.5 \,\mu m (33.3) = 50 \,\mu m$$

(c) Design the layout for this MOS resistor so it occupies a minimum area. The length of the source/drain diffusions is $L_{diff}=6$ um with contact that are 2um \times 2um.

Solution:

Given the high ratio of width to length (W/L=33.3), it is desirable to fold the MOSFET. Since the diffusions are 6 um long, the total length is

 $L_T = 3L_{diff} + 2L$ $= 3 \times 6 \text{um} + 2 \times 1.5 \text{um} = 21 \text{um}$

Example: Measuring the backgate effect parameter

The test circuit below can be used to find an experimental value for the backgate parameter γ_n . Note that a negative voltage V_{BS} is applied from the bulk to the source of the MOSFET. The circuit varies V_{GS} continuously from 0 to 5 V, for $V_{BS}=0$ $V_{BS}=-5V$. The drain-source voltage is $V_{DS}=100mV$.

(a) From the drain current measurements plotted below, find the backgate effect parameter. The device parameters are $u_n = 215 \text{ cm}^2 \text{V}^{-1} \text{S}^{-1}$, $C_{ox} = 2.3 \text{ fF/um}^2$, $V_{t0} = 1 \text{ V}$ and $N_a = 10^{17} \text{ cm}^{-3}$.

Fig. circuit to find the backgate effect parameter

Solution:

Since the drain voltage is small, the MOSFET operates in its triode region once V_{GS} exceeds the threshold voltage. The drain current is linear with V_{GS}

$$I_{D} \equiv \left(\frac{W}{L}\right) \mu_{n} C_{ox} \left[V_{GS} - V_{Tn} \left(V_{BS}\right)\right] V_{DS}$$

The threshold voltage is $V_T(V_{BS}) = V_{To} + \gamma \left(\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_p}\right)$

From the graph, we have $2V = 1V + \gamma_n \left(\sqrt{(0.84V + 5V)} - \sqrt{0.84V}\right) \rightarrow \gamma_n = 0.67V^{1/2}$

Homework 15

Consider an n-channel MOSFET with the following parameters: $u_n/C_{ox}=0.18 \text{ mA/V}^2$, W/L =8, and $V_T = 0.4 \text{ V}$. Determine the drain current I_D for (a) $V_{GS} = 0.8 \text{ V}$, $V_{DS} = 0.2 \text{ V}$; (b) $V_{GS} = 0.8 \text{ V}$, $V_{DS} = 1.2 \text{ V}$; (c) $V_{GS} = 0.8 \text{ V}$, $V_{DS} = 2.5 \text{ V}$; (d) $V_{GS} = 1.2 \text{ V}$, $V_{DS} = 2.5 \text{ V}$.