

Lecture 15

MOSFET Equivalent Circuit
Models

Outline

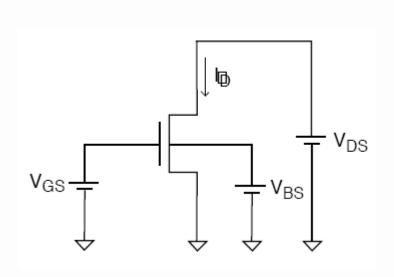
Large-signal model

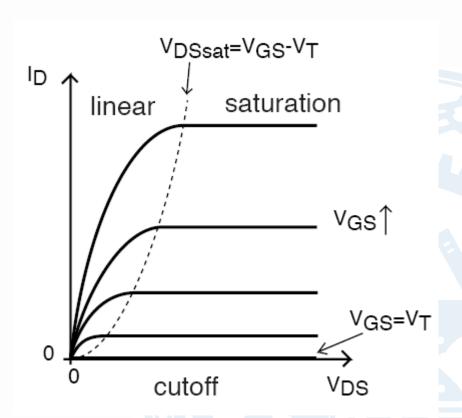
Low-frequency small-signal equivalent circuit model

High-frequency small-signal equivalent circuit model

Large Signal Model for NMOS Transistor

Regimes of operation:





• Cut-off

$$I_D = 0$$

• Linear / Triode:

$$I_D = \frac{W}{L} \mu_n \left[V_{GS} - \frac{V_{DS}}{2} - V_T \right] \bullet V_{DS}$$

• Saturation Regimes of operation:

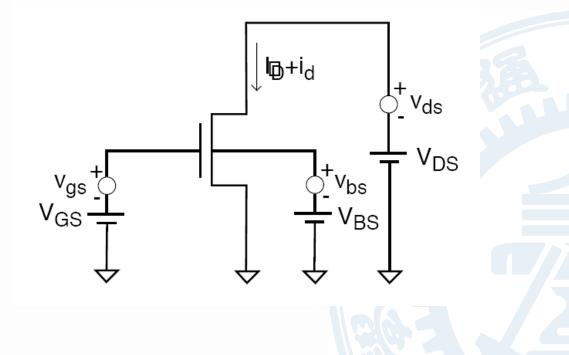
$$I_{D} = I_{Dsat} = \frac{W}{2L} \mu_{n} C_{ox} \left[V_{GS} - V_{T} \right]^{2} \bullet \left[1 + \lambda V_{DS} \right]$$

Effect of back bias

$$V_T\left(V_{BS}\right) = V_{To} + \gamma \left[\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_P}\right]$$

Small-signal device modeling

In many applications, we are only interested in the response of the device to a small-signal applied on top of a bias.



Key Points:

- Small-signal is small
 - response of non-linear components becomes linear
- Since response is linear, lots of linear circuit techniques such as superposition can be used to determine the circuit response.
- Notation: $i_D = I_D + i_d$ --- Total = DC + Small Signal

Mathematically:

$$\begin{split} i_{D}\left(V_{GS}, V_{DS}, V_{BS}; v_{gs}, v_{ds}, v_{bs}\right) \approx \\ I_{D}\left(V_{GS}, V_{DS}, V_{DS}, V_{BS}\right) + i_{d}\left(v_{gs}, v_{ds}, v_{bs}\right) \end{split}$$

With i_d linear on small-signal drives:

$$i_d = g_m v_{gs} + g_0 v_{ds} + g_{mb} v_{bs}$$

Define g_m transconductance [S]

 g_o output or drain conductance [S]

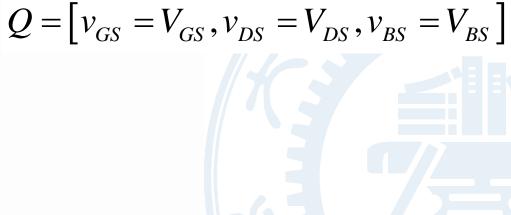
 g_{mb} backgate transconductance [S]

Approach to computing g_m , g_o , and g_{mb} .

$$g_m \approx \frac{\partial i_D}{\partial v_{GS}}\bigg|_Q$$

$$g_0 \approx \frac{\partial i_D}{\partial v_{DS}}$$

$$g_{mb} \approx \frac{\partial i_D}{\partial v_{BS}} \bigg|_{O}$$



Transconductance

In saturation regime:

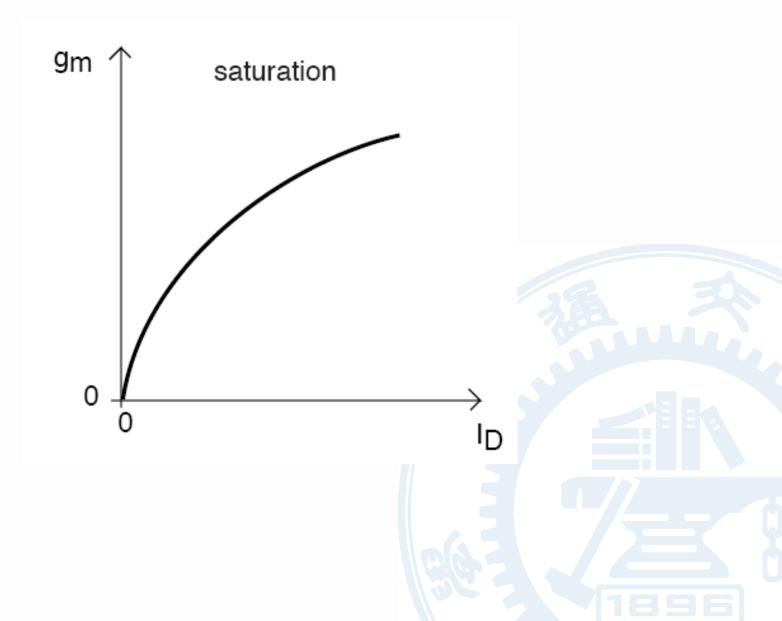
$$i_D = \frac{W}{2L} \mu_n C_{ox} \left[v_{GS} - V_T \right]^2 \bullet \left[1 + \lambda V_{DS} \right]$$

Then (neglecting channel length modulation) the transconductance is:

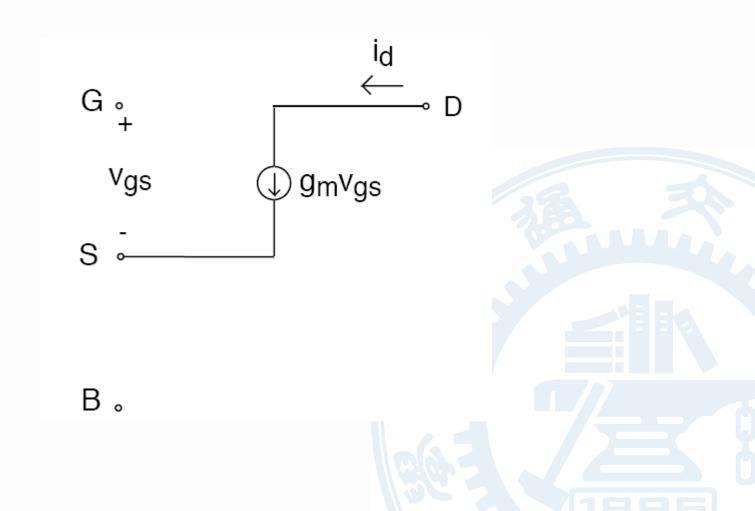
$$\left|g_{m} = \frac{\partial i_{D}}{\partial v_{GS}}\right|_{Q} \approx \frac{W}{L} \mu_{n} C_{ox} \left(V_{GS} - V_{T}\right)$$

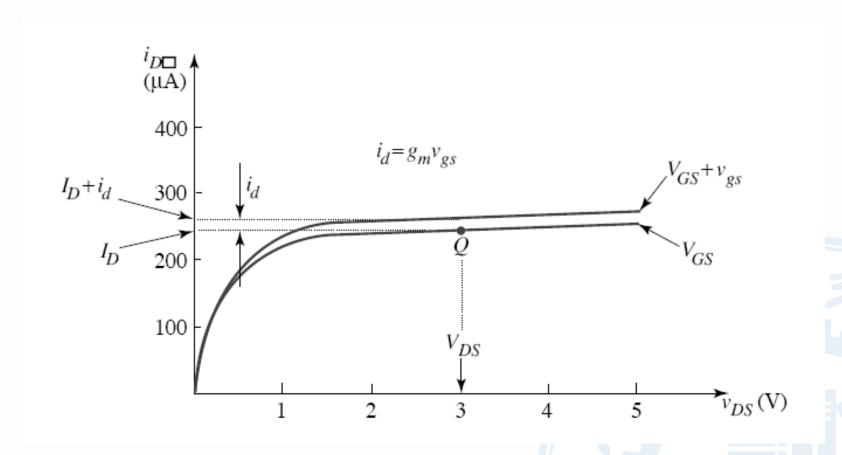
Rewrite in terms of I_D :

$$g_m = \sqrt{2 \frac{W}{L} \mu_n C_{ox} I_D}$$



Equivalent circuit model representation of g_m :





Output conductance

In saturation regime:

$$i_D = \frac{W}{2L} \mu_n C_{ox} \left[v_{GS} - V_T \right]^2 \bullet \left[1 + \lambda v_{DS} \right]$$

Then:

$$\left|g_{0} = \frac{\partial i_{D}}{\partial v_{DS}}\right|_{O} = \frac{W}{2L} \mu_{n} C_{ox} \left(V_{GS} - V_{T}\right)^{2} \cdot \lambda \approx \lambda I_{D}$$

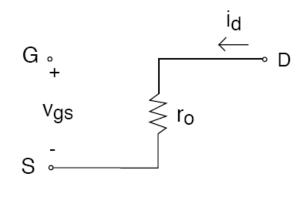
Output resistance is the inverse of output conductance:

$$r_0 = \frac{1}{g_0} = \frac{1}{\lambda I_D}$$

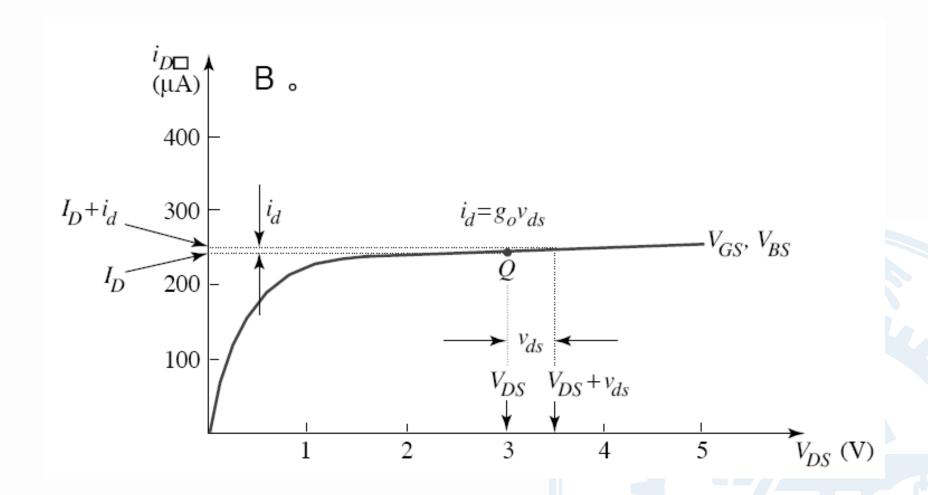
Remember also: $\lambda \propto \frac{1}{L}$

Hence: $r_0 \propto L$

Equivalent circuit model representation of g_o :



В。



Backgate transconductance

In saturation regime (neglect channel length modulation):

$$i_D \approx \frac{W}{2L} \mu_n C_{ox} \left[v_{GS} - V_T \right]^2$$

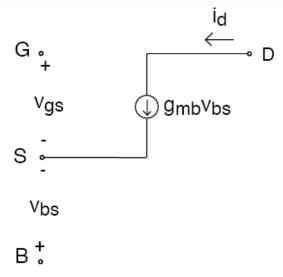
$$\left|g_{mb} = \frac{\partial i_{D}}{\partial v_{BS}}\right|_{Q} = -\frac{W}{L} \mu_{n} C_{ox} \left(V_{GS} - V_{T}\right) \cdot \left(\frac{\partial V_{T}}{\partial v_{BS}}\right)_{Q}$$

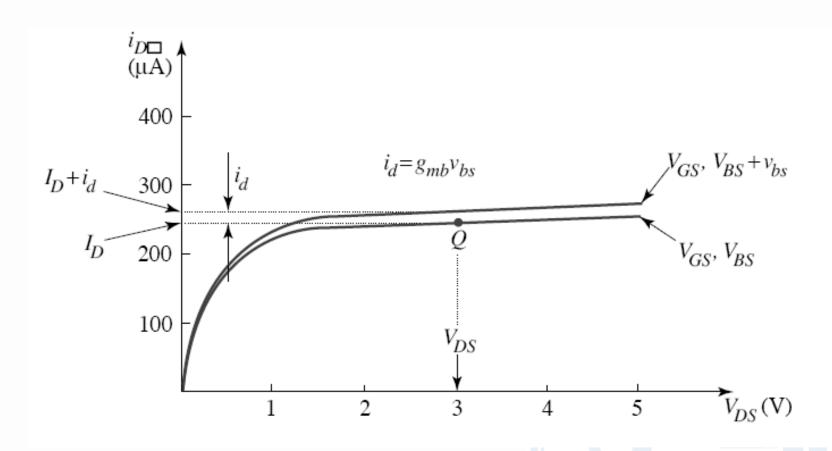
$$V_{T}\left(v_{BS}\right) = V_{T_{0}} + \gamma \left[\sqrt{-2\phi_{p} - v_{BS}} - \sqrt{-2\phi_{p}}\right]$$

$$\left. \frac{\partial V_T}{\partial v_{BS}} \right|_{Q} = \frac{-\gamma}{2\sqrt{-2\phi_p - V_{BS}}}$$

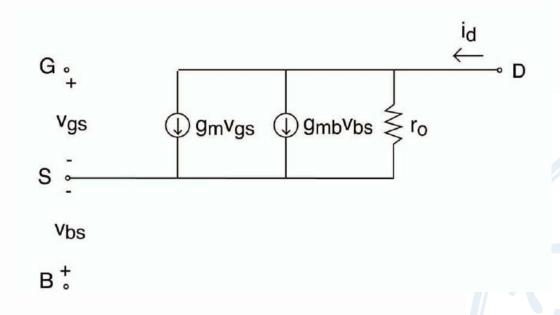
Hence:
$$g_{mb} = \frac{\gamma g_m}{2\sqrt{-2\phi_p - V_{BS}}}$$

Equivalent circuit representation of g_{mb} :





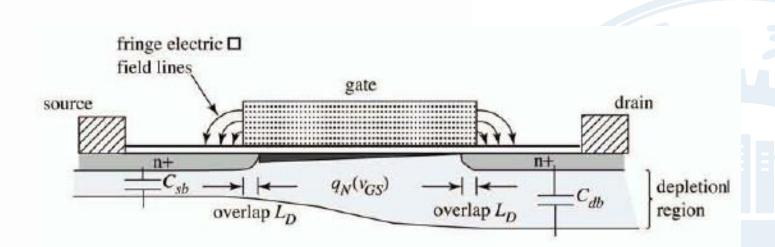
Complete MOSFET small-signal Equivalent circuit model for low frequency:



High-frequency small-signal equivalent circuit model

Need to add capacitances and resistance.

In saturation:



 C_{gs} = channel charge + overlap capacitance C_{ov} ,

 C_{gd} = overlap capacitance, C_{ov} ,

 C_{Sb} = source junction depletion capacitance (+sidewall)

 C_{db} = drain junction depletion capacitance (+sidewall)

ONLY Channel Charge Capacitance is intrinsic to device operation. All others are parasitic.

Inversion layer charge in saturation

$$q_{N}(v_{GS}) = W \int_{0}^{L} Q_{N}(y) dy = W \int_{0}^{v_{GS}-V_{T}} Q_{N}(v_{C}) \bullet \frac{dy}{dv_{C}} \bullet dv_{C}$$

Note that q_N is total inversion charge in the channel & $v_C(y)$ is the channel voltage. But:

$$\frac{dv_C}{dy} = -\frac{i_D}{W\mu_n Q_N(v_C)} \qquad \qquad I_D = -W \bullet Q_N(y) \bullet v_y(y)$$
$$v_y(y) = -\mu_n \bullet E_y(y) = \mu_n \bullet \frac{dV}{dy}$$

Then:

$$q_{N}(v_{GS}) = -\frac{W^{2}\mu_{n}}{i_{D}} \bullet \int_{0}^{V_{GS}-V_{T}} \left[Q_{N}(v_{C})\right]^{2} \bullet dv_{C}$$

Remember: $Q_N(v_C) = -C_{ox} \left[v_{GS} - v_C(y) - V_T \right]$

Then:

$$q_{N}(v_{GS}) = -\frac{W^{2}\mu_{n}C^{2}_{ox}}{i_{D}} \bullet \int_{0}^{v_{GS}-V_{T}} \left[v_{GS} - v_{C}(y) - V_{T}\right]^{2} \bullet dv_{C}$$

Do integral, substitute i_D in saturation and get:

$$q_N(v_{GS}) = -\frac{2}{3}WLC_{ox}(v_{GS} - V_T)$$

Gate charge: $q_G(v_{GS}) = -q_N(V_{GS}) - Q_{B,\text{max}}$

Intrinsic gate-to-source capacitance:

$$C_{gs,i} = \frac{dq_G}{dv_{GS}} = \frac{2}{3}WLC_{ox}$$

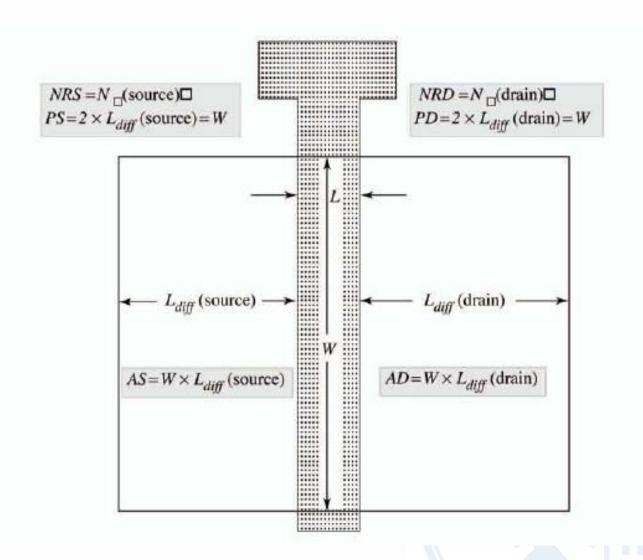
Must add overlap capacitance:

$$C_{gs} = \frac{2}{3}WLC_{ox} + WC_{ov}$$

Gate-to-drain capacitance — only overlap capacitance:

$$C_{gd} = WC_{ov}$$

Other capacitances



Source-to-Bulk capacitance:

$$C_{sb} = WL_{diff}C_j + (2L_{diff} + W)C_{jsw}$$

where C_i : Bottom Wall at $V_{SB}(F/cm^2)$

 C_{isw} : Side Wall at $V_{SB}(F/cm)$

Drain-to-Bulk capacitance:

$$C_{db} = WL_{diff}C_j + (2L_{diff} + W)C_{jsw}$$

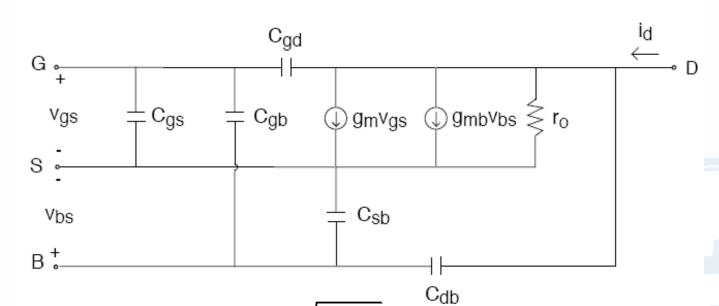
where C_i : Bottom Wall at $V_{DB}(F/cm^2)$

 C_{isw} : Side Wall at $V_{DB}(F/cm)$

Gate-to-Bulk capacitance:

 $C_{gb} \equiv$ small parasitic capacitance in most cases (ignore)

High-frequency small-signal equivalent circuit model of MOSFET



$$g_m \propto \sqrt{\frac{W}{L}I_D}$$

In saturation:

$$r_0 \propto \frac{L}{I_D}$$
 $C_{gs} \propto WLC_{ox}$

Frequency Limitation factors and Cutoff Frequency

Two frequency Limitation factors:

- Channel transit time
- Capacitance charging time dominating factor
- 1. Channel transit time

$$\tau_t = \frac{L}{v}$$

The minimum channel transit time is

$$\tau_{t\min} = \frac{L}{v_{sat}}$$

The maximum frequency is

$$f_{\max} = \frac{1}{\tau_{t\min}}$$

2. Capacitance charging time

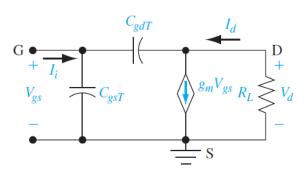


Fig. High frequency small signal model

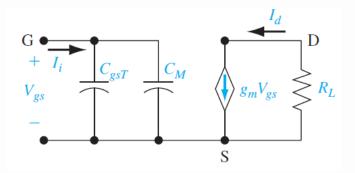


Fig. High frequency small signal equivalent circuit model including miller capacitance

The input current is

$$I_i = j\omega C_{gsT} V_{gs} + j\omega C_{gdT} (V_{gs} - V_d)$$

Summing the output current

$$\frac{V_d}{R_I} + g_m V_{gs} + j\omega C_{gdT} (V_d - V_{gs}) = 0$$

Combining the two equations to eliminate the voltage variable V_d , then

$$I_{i} = j\omega \left[C_{gsT} + C_{gdT} \left(\frac{1 + g_{m}R_{L}}{1 + j\omega R_{L}C_{gdT}} \right) \right] V_{gs}$$

Normally, $\omega R_{\scriptscriptstyle L} C_{\scriptscriptstyle gdT}$ is much less than unity

$$I_i = j\omega[C_{gsT} + C_{gdT}(1 + g_mR_L)]V_{gs}$$

The miller capacitance is then

$$C_M = C_{gdT}(1 + g_m R_L)$$

Cutoff frequency

the frequency at which the magnitude of the current gain of the device is unity

$$I_i = j\omega(C_{gsT} + C_M)V_{gs}$$
 $I_d = g_m V_{gs}$ $\left| \frac{I_d}{I_i} \right| = \frac{g_m}{2\pi f(C_{gsT} + C_M)} = 1$ $f_T = \frac{g_m}{2\pi (C_{gsT} + C_M)} = \frac{g_m}{2\pi C_G}$

When the ideal MOSFET is biased in the saturation region, C_{gd} approaches zero and C_{qs} is approximately $C_{ox}WL$, and the transconductance is

$$g_{ms}=rac{W\mu_n C_{
m ox}}{L}(V_{GS}-V_T)$$
 The cutoff frequency is $f_T=rac{g_m}{2\pi C_G}=rac{W\mu_n C_{ox}(V_{GS}-V_T)}{2\pi C_{ox}WL}=rac{\mu_n(V_{GS}-V_T)}{2\pi L^2}$

Source resistance effect

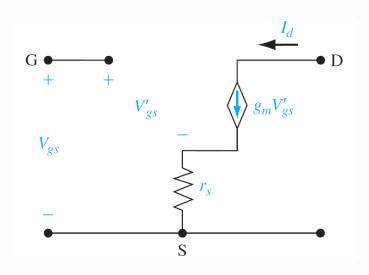


Figure Simplified, low frequency small-signal equivalent circuit of common-source n-channel MOSFET including source resistance

$$V_{gs} \equiv V'_{gs} + (g_m V'_{gs}) r_s \equiv (1 + g_m r_s) V'_{gs}$$

$$I_d = \left(\frac{g_m}{1 + g_m r_s}\right) V_{gs} = g_m^t V_{gs}$$

The source resistance reduces the effective transconductance or transistor gain.

Homework16

Consider an ideal n-channel MOSFET with a width-to-length ratio of (W/L) =10, an electron mobility of un =400 cm² /V-s, an oxide thickness of t_{ox} =475 Å, and a threshold voltage of V_T =0.65 V.

- (a) Determine the maximum value of source resistance so that the saturation transconductance g_{ms} is reduced by no more than 20 percent from its ideal value when $V_{GS} = 5 \text{ V}$.
- (b) Using the value of r_s calculated in part (a), how much is g_{ms} reduced from its ideal value when $V_{GS} = 3$ V?

