



# Lecture 20

## **Transistor Amplifiers (II)**





### **Contents:**

### Common-drain amplifier

Common-gate amplifier







## **Key questions**

- What other amplifier stages can one build with a single MOSFET and a current source?
- What is the uniqueness of these other stages?







## 2. Common-drain amplifier







#### How does it work?

•*V<sub>GG</sub>*, *I<sub>SUP</sub>*, and *W/L* selected to bias MOSFET in saturation, obtain desired output bias point, and desired output swing. •*v<sub>GG</sub>*  $\uparrow \Rightarrow i_D$  can't change  $\Rightarrow v_{OUT} \uparrow$  (source follower)

- to first order, no voltage gain:  $v_{out} \cong v_s$
- but  $R_{out}$  small: effective voltage buffer stage (good for making voltage amp in combination with common-source stage).







# Small-signal analysis Unloaded small-signal equivalent circuit model:





7



### Input impedance: $R_{in} = \infty$ Output impedance:







#### Effect of back bias: If MOSFET not fabricated on isolated p-well, then body is tied up to wafer substrate (connected to $V_{SS}$ ):



Two consequences:

Bias affected:  $V_T$  depends on  $V_{BS} = V_{SS} - V_{OUT} \neq 0$ Small signal figures of merit affected: signal shows up between B and S  $(v_{BS} = -v_{out})$ .





#### Small signal equivalent circuit model:







□ Relationship between circuit figures of merit and device parameters:



CD amp useful as a voltage buffer to drive small loads (in a multistage amp, other stages will be used to provide voltage gain).





## 3. Common gate amplifier

Need to handle current mode signal sources:







#### How does it work?

- Since source is signal input terminal, body cannot be tied up to source ( $C_{sb}$  is significant)
- $i_{SUP}$ ,  $I_{BIAS}$ , and W/L selected to bias MOSFET in saturation, obtain desired output bias point, and desired output swing.
- no current gain:  $i_s = i_{out}$  (current buffer)





# **D** Bias: select $I_{SUP}$ , $I_{BIAS}$ , and W/L to get proper quiescent $I_{OUT}$ and keep MOSFET in saturation



$$I_{SUP} + I_{OUT} + I_{BIAS} = 0$$

Select bias so that  $I_{OUT} = 0 => V_{OUT} = 0$ .

Assume MOSFET in saturation (no channel modulation):

$$I_{D} = \frac{W}{2L} \mu_{n} C_{ox} (V_{GS} - V_{T})^{2} = I_{SUP} = -I_{BIAS}$$

but  $V_T$  depends on  $V_{BS}$ :

$$V_T = V_{To} + \gamma_n (\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_p})$$

Must solve these two equations iteratively to get  $V_S$ .





### □ Small signal circuit (unloaded)























#### Output resistance:







### Summary of MOSFET amplifier stages:

| $\operatorname{stage}$ | $A_{vo}, G_{mo}, A_{io}$                 | $R_{in}$                 | $R_{out}$                  | key function          |
|------------------------|------------------------------------------|--------------------------|----------------------------|-----------------------|
| common source          | $G_{mo} = g_m$                           | $\infty$                 | $r_o//r_{oc}$              | transconductance amp. |
| common drain           | $A_{vo} \simeq \frac{g_m}{g_m + g_{mb}}$ | $\infty$                 | $\frac{1}{g_m + g_{mb}}$   | voltage buffer        |
| common gate            | $A_{io} \simeq -1$                       | $\frac{1}{g_m + g_{mb}}$ | $r_{oc}//[r_o(1+g_m R_S)]$ | current buffer        |

In order to design amplifiers with suitable performance, need to combine these stages ⇒ multistage amplifiers





# CMOS multistage voltage amplifier Goals:

- high voltage gain
- high  $R_{in}$
- low  $R_{out}$
- •Good starting point: CS stage







### **□**Add second CS stage to get more gain:



$$R_{in} = \infty$$
  

$$A_{vo} = g_{m1}(r_{O1} / / r_{OC1})g_{m2}(r_{O2} / / r_{OC2})$$
  

$$But R_{out} = r_{O2} / / r_{OC2}, still high$$





### **□**Add CD stage at output:



$$R_{in} = \infty$$

$$A_{vo} = g_{m1}(r_{O1} / / r_{OC1})g_{m2}(r_{O2} / / r_{OC2})\frac{g_{m3}}{g_{m3} + g_{mb3}}, \text{ still high}$$

$$R_{out} = \frac{1}{g_{m3} + g_{mb3}}, \text{now small}$$





Amplifier requirements are often demanding:

- must adapt to specific kinds of signal source and load,
- must deliver sufficient gain
  - Single-transistor amplifier stages are very limited in what they can accomplish
    - $\Rightarrow$  multistage amplifier.







## **Key conclusions**

Different MOSFET stages designed to accomplish different goals:

- Common-source stage:
  - large voltage gain and transconductance, high input resistance, large output resistance
  - excellent transconductance amplifier, reasonable voltage amplifier
- Common-drain stage:

no voltage gain, but high input resistance and low output resistance good voltage buffer

• Common-gate stage:

no current gain, but low input resistance and high output resistance good current buffer

