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Semiconductor physics 11

Introduction to Quantum Mechanics
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What is Quantum Mechamcs“

@® (lassical theoretical physics
-- Newton's laws of motion.
-- The motion of large objects, such as planets and satellites.
® (Quantum mechanics (EF47IE)
-- the behaviors of electrons (fermionsZ2KF)

-- the behaviors of high-frequency electromagnetic waves

(bosonsiE &)

® Wave mechanics: The formulation of quantum mechanics to
describe behavior and characteristics of these electrons.

-- Schrodinger wave equation
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Principles of Quantum Mechanics

l

Schrodinger wave equation

l

The electron behavior in a crystal

The operation and characteristics
of semiconductor devices



Principles of Quantum Mechanics

» The principle of energy quanta
(gEEE L)
» The wave-particle duality principle
CERL M)
» The uncertainty principle
(N EIRIE)




Prlnmple of energy quanta

. Incident Photoelectron
Experiment of photoelectric effect monochromatic kinetic
light energy = T
-To demonstrate the invalidation of \/
the classical theoretical physics
Material

Fig The photoelectric effect

If monochromatic (B2 €&) lightis incident on a clean
surface of a material, then under certain conditions,
electrons (photoelectrons) are emitted from the surface.

--- condition in classical theoretical physics: intensity of the
light independent of frequency.
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Maximum kinetic energy Quanta (EF)

fmax —thermal radiation (FRIEET)
emitted from a heated surface in
discrete packets of energy

— Postulated by Planck in 1900

The energy of these quanta

Vo Frequency, v E = hyv

h 1s a constant known as Planck’s
Fig The maximum kinetic energy anstant (h =6.625 x 10.'34.J -S).

(ZBE) of the photoelectronasa V18 frequency of the radiation.
function of incident frequency.

If the incident intensity varies at a constant frequency, the rate of

photoelectron emission (JtE&5I%1%) changes, but the
maximum kinetic energy remains the same.
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Photon (3£—F)- the particle-like packet of energy

In 1905. Einstein interpreted the photoelectric results:

a light wave 1s also contained in discrete packets or bundles,
whose energy is also given by £ = hv.

A photon with sufficient energy, then, can knock an electron from
the surface of the material.

The work function (IJERZ) of the material:
The minimum energy required to remove an electron from the
surface, which 1s Av,,

The maximum kinetic energy of the photoelectron

T =%mv2 =hv—hv, (vzv,)

max

where /v 1s the incident photon energy.
hv,1s the minimum energy, or work function.
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Example:

To calculate the photon energy corresponding to a particular
wavelength. Consider an x-ray with a wavelength of 0.708
X 10-3cm. Calculate its photon energy.

Solution:
-34 10
E=hy= he — (6.625x107)(3x107) c: velocity of light
y) 0.708x10°
=2.81x107"J

The reciprocal relation (B k%) between photon energy
and wavelength :
A large energy corresponds to a short wavelength.
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Wave-Particle Duality

» The existence of a wave-particle duality principle.
De Broglie hypothesis: since waves exhibit particle-like
behavior, then particles should be expected to show wave-like

properties. (subatomic particles (I JEFHiF) : electrons,
protons (J&iF) , and neutrons () )

» The momentum (ZfZ) of a photon is:

pP== the wavelength of the light wave

The wavelength of a particle is:

At

P

de Broglie wavelength of the matter wave
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Example:

To calculate the de Broglie wavelength of a particle.
Consider an electron traveling at a velocity of 10" cm/sec =10°m/s

Solution:
The momentum 1s given by

p=my= (9.11><10_31)(105)
=9.11x107%

Then the de Broglie wavelength 1s

_h_6.625x10™

A =
p  9.11x107

=727x10° m
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The Uncertainty Pr1nc1p‘le

[0 The Heisenberg uncertainty principle
--- given 1n 1927.

--- we cannot describe with absolute accuracy the behavior of
subatomic particles, including position and momentum and
also energy and time.

[J It is impossible to simultaneously describe with absolute
accuracy the position and momentum of a particle.

Apr>h

\ a modified
the uncertalnty in Planck's constant

the uncertainty
the momentum

in the position A= 2i —1.054x10*J-s
T

p—
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It 1s impossible to simultaneously describe with absolute
accuracy the energy of a particle and the instant of time the
particle has this energy.

/ AEAt > h
the uncertainty in the uncertainty
energy in time

€ The simultaneous measurements of position and momentum
and of energy and time are in error to a certain extent.

€ We will develop a probability density function (#{ZRZEE

K& ) that will allow us to determine the probability that an
electron has a particular energy.

€ The uncertainty principle is only significant for subatomic
particles.
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Schrodinger’s Wave Equation
» Provided by Schrodinger, in 1926.
» Called wave mechanics, which incorporated the principles

of quanta introduced by Planck, and the wave-particle
duality principle introduced by de Broglie.

» The motion of electrons in a crystal can be described by wave

The one-dimensional, nonrelativistic (FEFfEXJi£) Schrodinger's

wave equation

-, aij(f’t ) V()W (x,t) = jh 2D

/Zm Ox / \ Ot

the wave function
the mass of

the particle

the potential function
assumed to be independent of time

13
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Using the technique of separation of variables ﬁ’ TEE)

FOyew

a function of the position  a function of time

Substituting this form of the solution into Schrodinger's wave
equation:

h g )a "”(x)

VW) = jhy(x) a”’f)

Dividing 1t by the total wave function

- 1 azW(x)+V(x):jh 1 0¢(¢)
2m w(x) oOx ¢(t) ot

(nonrelativistic)=>
a function of position = a function of time = constant
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0 The time-dependent portion

a separation constant n= jh— 020
o) o

The solution ¢(¢)=e /""" ---a sinusoidal wave

n/h is the radian frequency (F5IZ)
Wehave EF=hvorE=hw/2x

Then w:%:E/h

The separation constant is equal to the total energy E of the
particle
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O The time-independent portion

1 9y +V(x)=E
2m w(x) ox° @
O'w(x) 2m

2 T (E-=V(x)y(x)=0

This time-independent Schrodinger's wave equation can
also be justified on the basis of the classical wave equation.
O The time-independent classical wave equation, in terms of

) 2
voltage, GaV(zx) +(EW(x)=0 let p(O =V(x) —
X \%

p
From the wave- @ 27, 2m . p>. 2m
particle duality 2 ( ) ) = ?(%) = h_z( E-V)
principle ; ,
16 m V
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Physical Meaning of the Wave Function

--- to use the wave function to describe the behavior of an electron in a crystal
the wave function  W(x,¢) =y (x)d(t) = w(x)e /"

|\P( . t)|2 Jdc 2 probability density function, or the probability of finding
, the particle between Ax and Ax + dx at a given time

Y (x, ) (x,0) =y (x)y (x)= |l//(x)|2 independent of time
---in agreement with the Heisenberg uncertainty principle

Comparisons:

In classical mechanics, the position of a particle can be determined precisely.
In quantum mechanics, the position of a particle is found in terms of a
probability independent of time.

17
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Boundary Conditions

)| represents the probability density function

[yl ax=1

—00

» The wave function and its first derivative must have the following
properties if the total energy £ and the potential V(x) are finite
everywhere.

Condition 1. ¥(x) must be finite, single valued and continuous.
If Y(x) were infinite, the probability of finding the particle at
some point would be certain. — violate the uncertainty principle.

Condition 2. °¥Y()/ must be finite, single-valued, and continuous.

Ox
a;” (x) | 2m BV (W () =0
x

The second derivative is flnlte, so the first derivative is continuous.
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Application of Schrodinger’s Wave Equation

[J Electron in Free Space
v’ Consider the motion of an electron in free space.

v" There is no force acting on the particle, then the potential
function V(x) will be constant. Assume V'(x)=0.

v' Then the time-independent wave equation:

O'w(x) 2mE
+ x)=0
2 g VW
Its solution y (x)= Adexp[ i 2mE]JrBexp —xImE
/ h v\ h
a traveling wave a traveling wave
in the +x direction in the -x direction

19
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v" Recall that the time-dependent portiony (¢) = ¢/
Then the total solution for the wave function

Y (x, t) = Aexp {% (x~/2mE — Et)} + Bexp {_7] (x~/2mE + Et)}
O Assume, there is the +x traveling wave, which is

¥ (x,7) = Aexp[j(kx — )] ----Travelling wave
5 (473
The wave number &k =—
h
N2mE
The probability density function is a constant 44 *.

the wavelength A=

A free particle with a well-defined momentum can be
found anywhere with equal probability.

— a precise momentum implies an undefined position.

— in agreement with the Heisenberg uncertainty principle
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OThe Infinite Potential Well (Fc PR R BH)

The problem of a particle in the infinite potential well is
a classic example of a bound particle.

The particle 1s assumed to exist in region II.

Ve The time-independent

TF Schrodinger's wave equation
1

O'w(x) 2m B B
PRy (E-V(x)y(x)=0

Assume V=0 in region Il

egion egion eoion 82 X 2mE

Region I Region 11 Region 1 é/;g)_'_ hz W(X)ZO
Its solution

=8 =g w(x)=A, cosKx+A, sinKx

Fig Potential function of

the infinite potential well. K 2mE
\/ 2
21 h

——fe
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The wave function must be zero in both regions I and region III since the
probability of finding the particle in regions I and region III is zero.

=> One boundary condition is that the wave function must be continuous

y(x=0)=y(x=a)=0
—>A,=0and K="2
a

Since J: () (x)dx =1

a . 2
| 43 sin® Kxdx =1 4, = |=
v a
Finally, the time-independent wave solution is
2 . nrx ----standing wave
x)=,/—sin(——) when n=1,2,3... 8
V() a ( a ) (3EH)

The electron in the infinite potential well is a standing wave solution
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Comparison:

» The free electron is represented by a traveling wave.
» The bound particle is represented by a standing wave.
Equating the two expressions for K. we obtain
_2mE  n'r’
B4

The total energy can then be written as |E=E,

k2

2.2 2
h'n'r

T 2
2ma

For the particle in the infinite potential well, the wave function 1s

w(x)= %sinKx k="
a a

> the energy of the particle is quantized.
» contrary to results from classical physics, which would allow
the particle to have continuous energy values.

23
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Example

Consider an electron in an infinite potential well of width 5 A.
To calculate the first three energy levels of an electron in an
infinite potential well.

Solution:
P e’ n’(1.054x107%)° %)
" 2ma®  (2(9.11x107")(5x107"%)’

P n*(2.41x107")
" 1.6x107"

=n’(2.41x107")J

=n>(1.51) eV

E =15leV E,=604eV E,=13.59¢V

24
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Fig Particle in an infinite potential well:
(a) Four lowest discrete energy levels.

(b) Corresponding wave functions.

(c) Corresponding probability functions

As the energy increases,
the probability of
finding the particle at
any given value of x
becomes more uniform.
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OThe Step Potential Function (Bﬁﬂi?z‘ )

V(x)

* A flux of particles 1s incident on the
Incident particles v, potential barrier.

k * The total energy of the particle is
less than the barrier height, or £ <V,
* The wave equation

(x) 2m

£=0 a (E V() (x)=0
X

Region | Region II

Inregionl, V=0 giz(x) 2;;1 w,(x)=0

v, (x)=Ae’ +Be ™ (x<0) K, =

2mE

hZ

the incident and reflected particles are represented by traveling waves

A; A,"is the probability density function of the incident particles
v; A; A;" the flux of incident particles; v, B; B, the flux of reflected particles

26 v; is the velocity of the incident wave, and v, is the velocity of reflected wave.
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In region II, the potentialis "=V,  Since £ <V,

Wz (x) 2m

8 2
2 —E
W, (x) = de " + Bze+K2x (x20) K, = \/ m(l;loz )

One boundary condition: the wave function must remain finite

(V E)y,(x)=0

=>B,=0 => y,(x)=4e ™" (x20)
The second boundary condition: The wave function at x = () must be
continuous => ¥,(0)=y,(0) => 4 +B =4,

The third boundary condition: the first derivative of the wave function
must also be continuous

e _awm®
= ox |, ox

x=0

_(K22 +2jK1K2 _KIZ)AI A = 2K1(K1 _sz)Al

- B= =
. (K2 +K?2) P (K2+KD)
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The reflected probability density function

(K; — K +2jK K)K;-K}-2jK K,)A ®A

B, OB >
(K, +K7)*

Reflection coefficient

v.eB eB the ratio of the reflected

o= vede A1* flux to the incident flux

In region I, V= 0 so that £ = T (the kinetic energy of the particle)

2
T:lmv2 => \/2—m(lmv ) =,|m’ r =
2 noooh
=> The incident velocity and the reflected velocity
Vi :z'Kl =V, :z°K1
m m

v,eB eB B eB _

The reflection coefficient 1s p = .
o4 oA AeA

28
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» In Region I, the result of R=1 implies that all of the particles
incident on the potential barrier for £ < V', are eventually
reflected. --- consistent with classical physics

> Inregion I, ¥,(x) = 4,e ™

For the case of E < V), the coefficient 4, 1s not zero.

—There 1s a finite probability that the incident particle will

penetrate the potential barrier and exist in region II.

--- difference between classical and quantum mechanics

Although there 1s a finite probability that the particle may
penetrate the barrier, since the reflection coefficient in region
I is unity, the particle in region II must eventually turn around
and move back into region I.
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Example:

Consider an incident electron that 1s traveling at a velocity of
1 X10°m/s in region I. To calculate the penetration depth of a
particle impinging on a potential barrier V, =2E.

Solution

With V(x )=0, the total energy 1s also equal to the kinetic energy

E=T :%mvz =4.56x10*J=2.85x107 eV

The wave function: w,(x)=A4,e " K, = \/Zm(VO —E)/ R
We want to determine the distance x = d at which the wave function
magnitude has decayed to e! of its value at x = 0.

lzd\/Zm(2E—E) _ . [2mE

h2 d h2

n 1.054x107**
2mE  \[2(9.11x107")(4.65x10")

The distance d = =11.6x10""m




By Y FLALY

SHANGHAI JIAO TONG UNIVERSITY

COThe Potential Barrier

Vi(x)

® A flux of incident particles originating
on the negative x axis travel in the +x

direction.
il e e ® The total energy of an incident particle

s E<V,

Vo

x=0 v=4a

Fig The potential barrier function

The solutions of the wave equation in regions I, I, and III are

. . /2 E
w,(x) = 4™ +Be K, = le

. . 2m(V, — E
w,(x)= Aze]sz + Bze_Jsz K, = \/ i h02 )

v, (x) = A, + Be ™

31
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»The coefficient B, presents a negative traveling wave in region I1II.
However, once a particle gets into region III, there are no potential changes to

cause a reflection. => B; =0

» We have four boundary relations for the boundaries at x = 0 and x = a
corresponding to the wave function and its first derivative being continuous.
= We can solve for the four coefficients B, , 4,, B, ,and 45 in terms of 4,

Fig The wave functions through the potential barrier.

32
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The transmission coefficient, in this case defined as the ratio of
the transmitted flux in region III to the incident flux in region I
veded Aed

veded Aed

v,: velocity of transmitted particle; v;: velocity of incident particle.

For the special case when E <<V, we find that

T ~ 16(5)(] _ L exp(—2K,a)

0 0

There is a finite probability that a particle impinging a potential
barrier will penetrate the barrier and will appear in region III.

--- tunneling phenomenon (BXZEW) contradicts classical mechanics

The application of this quantum mechanical tunneling phenomenon:
semiconductor device characteristics, such as in the tunnel diode

33
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Example:

Consider an electron with energy of 2eV impinging on a potential
barrier with V,, = 20 eV and a width of 3 A.
To calculate the probability of an electron tunneling through a
potential barrier.
Solution:
The tunneling probability
p :\/2m(VO —E) :\/2(9.11><1031)(20—2)(1.6><1019)
? B (1.054x1073)?

The transmission coefficient

T~ 16(5)(1 _ L exp(<2K,a)

0 0

=16(0.1)(1-0.1)exp[-2(2.17x10")(3x107'°)]=3.17x10°°

The tunneling probability may appear to be a small value, but it is not zero.

If a large number of particles impinge on a potential barrier, a significant
number can penetrate the barrier.



= > ,“.'.'/"
X AR d

SHANGHAI JIA

35

TONG UNIVERSITY

Extensions of the Wave Theory
to Atoms
The One-Electron Atom

Bohr theory: In the atom, the nucleus 1s a heavy, positively
charged proton (JiiF) surrounded by electrons which are light,
negatively charged particles.

The potential function due to the coulomb attraction
between the proton and electron and 1s

O

spherically symmetric —a three
dimensional problem in spherical
dne,r coordinates.

2
—€

V(r)=

e 1s the magnitude of the electronic charge
g, 1s the permittivity of free space
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The time-independent Schrodinger's wave equation in three
dimensional spherical coordinates 1s

Vo (r,0,4)+ 2;’;’0 (E—V( )W (r.0,4)=0

m, 1s the rest mass of the electron.

Laplace operator in spherical coordinates can be written as

2
lzoa(rzal’”)+ - .12 oal/;+ - .12 . 8(sin¢98—l/j
r- or or  r'smm 6 0¢- rsm 6 06 06
2

_I_

;ZZO (E-V(r))y =0

By the separation-of-variables technique

y(r,0,p) = R(r)* ©(0) e D(9)
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o 9 2
sin 9. 0 ? aR)+ioaq2)+Sln6 0 ( nH—)
R or or ® 0¢ ®

2m,

—(E-V)=0

+7>sin” @
Since the second term 1s a function of ¢ only
1 82CD 5
d) Gl/%
m 1s a separation of variables constant
O=e"  m=0,+1,+2,%3,...
We can define two additional separation-of-variables
constants / and » for variable 6 and ,

n,l,and m are known as quantum numbers

n=12,3,..

I=n—Ln—2.n-3..0 Each set of quantum number
corresponds to a quantum state

m|=1,1-1,...,0

which the electron may occupy.
37
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The electron energy 1s written in the form

4
—m,e

E =
" (4re, ) 200

n 1s the principal quantum number.

* The negative energy indicates that the electron is bound to the

nucleus.

* The energy of the bound electron 1s quantized.

* If the energy were to become positive, then the electron
would no longer be a bound particle and the total energy would

no longer be quantized.

38
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The solution of the wave equation may be designated by ¥.um

For the lowest energy state, n = 1,/ = 0, and m = 0, the wave

function 1s 1 1
_)3/2 e—r/ao

Y100 :ﬁ(a
0

This function 1s spherically symmetric, and the parameter a 1s
Bohr radius CGE/RFEF) .

A h’ o
a, = " 22 =0.529A
0

The radial probability density function (1R[] E R

—the probability of finding the electron at a particular distance
from the nucleus,

— proportional to the product

39
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Electron cloud or energy shell

The second energy shell is at a

reater radius from the nucleus
The most probable fhan the ﬁrsli ener sheli1 ’
distance from the M :
nucleusis atr =a,

2 ag
{a) (b)
Fig The radial probability density function for the one-electron atom in the (a)

lowest energy state (n=1,/=0,m=0) (b) next-higher energy state (n=2,/=0,m=0)

For the case of n =2 and / = 1. there are three possible states corresponding to

the three allowed values of the quantum number m  (m=1,-1,0.) . The wave
functions are no longer spherically symmetric.
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CThe Periodic Table

Schrodinger's wave equation + Two concepts

* Electron spin (B8 F EJ¥)

---The electron has an intrinsic angular momentum, or spin,
which 1s quantized and may take on one of two possible values

S=+1/2 and S=-1/2.
Four basic quantum numbers: », [, m, s.

* Pauli exclusion principle

--- In any given system (an atom, molecule, or crystal), no
two electrons may occupy the same quantum state.

--- In an atom, no two electrons may have the same set of
quantum numbers.

41
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Table Initial portion of periodic table

Element Notation n [ m s
Hydrogen (1) 1s' 1 0 0 +%0r_%
Helium (2) 1s? I 0 0 + yand = /)
Lithium (3) Is*2s 2 0 0 Yor-Y
Beryllium (4) 15225> 2 0 0 + Vand -1
Boron (5) 1S22S22p1 2 1
Carbon (6) 1s*2s? 2]92 2 1
Nitrogen (7) 1522522 p° 2 1 m=0,-1,+1
Oxygen (8) 1s*252p" 2 1 s=+ y — %
Fluorine (9) 1s°2s°2p’ 2 1
Neon (10) 1s°2s%2p° 2 1

s represents the first energy shell, n=1, [=0, m=0, s=+1/2,-1/2, two electrons.
2s2p represents the second energy shell,
n=2, [=0, m=0, s=+1/2,-1/2,
n=2, I=1, m=0+1,-1, s=+1/2,-1/2,
can accommodate eight electrons.
The energy shell is determined by the main quantum number n, and can

n—1
accommodate Z 2(21+1)=2n">  electrons.
[=0
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Fig 2D structure of Si atom Fig 3D structure of Si atom

v'The inner shells are full and the chemical activity of an element
is determined primarily by the valence, or outermost, electrons.
v'If all of the energy shells are full, the element doest not react
with other elements and is an inert element (fEMETE) .
v'Semiconductor elements are in Group III, V, and V1.
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A one-dimensional infinite potential well with a

width of 12 A contains an electron.

(a) Calculate the first two energy levels that the
electron may occupy.

(b) If an electron drops from the second energy level
to the first, what is the wavelength of a photon
that might be emitted?

44
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The basic concepts of quantum mechanics can be used to describe the

behavior of electrons under various potential functions.

The wave-particle duality principle : Particles can have wave-like

behavior and waves can have particle-like behavior.

Schrodinger's wave equation forms the basis for describing and predicting

the behavior of electrons.

applying Schrodinger‘s wave equation to a bound particle : energy of the
bound particle is quantized.

applying Schrodinger‘s wave equation to an electron incident on a

potential barrier: there is a finite probability of tunneling.

applying Schrodinger‘s wave equation to the one-electron : the periodic
table.
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