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What is Quantum Mechanics What is Quantum Mechanics 
 Classical theoretical physics

-- Newton's laws of motion.

-- The motion of large objects, such as planets and satellites.

 Quantum mechanics （量子物理）

-- the behaviors of electrons （fermions费米子）

-- the behaviors of high-frequency electromagnetic waves 
(bosons波色子)

 Wave mechanics: The formulation of quantum mechanics to 
describe behavior and characteristics of these electrons.

-- Schrodinger wave equation
2



3

The operation and characteristics 
of semiconductor devices

Principles of Quantum Mechanics

Schrodinger wave equation 

The electron behavior in a crystal



Principles of Quantum MechanicsPrinciples of Quantum Mechanics

The principle of energy quanta 

（能量量子化）

The wave-particle duality principle

（波粒二象性）

The uncertainty principle

（不确定原理）
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Experiment of photoelectric effect

-To demonstrate the invalidation of 

the classical theoretical physics  
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If monochromatic （单色） light is incident on a clean 
surface of a material, then under certain conditions, 
electrons (photoelectrons) are emitted from the surface.
--- condition in classical theoretical physics: intensity of the 
light independent of frequency.

Fig The photoelectric effect

Principle of energy quantaPrinciple of energy quanta
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Maximum kinetic energy     
Tmax

Frequency, vv0

Quanta（量子）
－thermal radiation （热辐射）
emitted from a heated surface in 
discrete packets of energy 
－Postulated by Planck in 1900

The energy of these quanta

E = hv
h is a constant known as Planck’s 
constant (h = 6.625 x 10-34J-s).
v is frequency of the radiation. 

Fig The maximum kinetic energy 
（动能）of the photoelectron as a 
function of incident frequency.

If the incident intensity varies at a constant frequency, the rate of 
photoelectron emission （光电发射效率） changes, but the 
maximum kinetic energy remains the same.
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A photon with sufficient energy, then, can knock an electron from 
the surface of the material.

The work function （功函数） of the material: 
The minimum energy required to remove an electron from the 

surface, which is hv0. 

Photon (光子)– the particle-like packet of energy
In 1905. Einstein interpreted the photoelectric results：
a light wave is also contained in discrete packets or bundles, 
whose energy is also given by E = hv.

The maximum kinetic energy of the photoelectron

where hv is the incident photon energy.
hv0 is the minimum energy, or work function.

2
max 0

1

2
T mv hv hv    0v v
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Example: 

To calculate the photon energy corresponding to a particular 
wavelength. Consider an x-ray with a wavelength of 0.708 
× l0-8cm. Calculate its photon energy.

Solution:

The reciprocal relation（互反关系） between photon energy 
and wavelength : 
A large energy corresponds to a short wavelength.

34 10

8

15

(6.625 10 )(3 10 )

0.708 10

                   2.81 10

hc
E hv

J









 
  


 

c: velocity of light



Wave-Particle DualityWave-Particle Duality
 The existence of a wave-particle duality principle.

De Broglie hypothesis: since waves exhibit particle-like 
behavior, then particles should be expected to show wave-like 
properties. (subatomic particles（亚原子粒子）: electrons, 
protons（质子）, and neutrons（中子）)  

 The momentum （动量） of a photon is:
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the wavelength  of the light wave

The wavelength of a particle is:

de Broglie wavelength of the matter wave

h
p




h

p
 
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Example:
To calculate the de Broglie wavelength of a particle.
Consider an electron traveling at a velocity of

Solution:
The momentum is given by

Then the de Broglie wavelength is
34

9
26

6.625 10
7.27 10

9.11 10

h
m

p








   



31 5

26

(9.11 10 )(10 )

           9.11 10

p mv 



  

 

7 510 cm/sec 10 m/s



The Uncertainty PrincipleThe Uncertainty Principle

 The Heisenberg uncertainty principle

--- given in 1927.

--- we cannot describe with absolute accuracy the behavior of 
subatomic particles, including position and momentum and 
also energy and time.

 It is impossible to simultaneously describe with absolute 
accuracy the position and momentum of a particle.
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the uncertainty in 
the momentum

the uncertainty 
in the position

a modified 
Planck's constant

p x   

341.054 10 J-s
2

h


  
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It is impossible to simultaneously describe with absolute 
accuracy the energy of a particle and the instant of time the 
particle has this energy.

the uncertainty in 
energy

the uncertainty 
in time

 The simultaneous measurements of position and momentum 
and of energy and time are in error to a certain extent.
We will develop a probability density function （概率密度
函数） that will allow us to determine the probability that an 
electron has a particular energy. 
 The uncertainty principle is only significant for subatomic 
particles.

E t   



Schrodinger’s Wave EquationSchrodinger’s Wave Equation
 Provided by Schrodinger, in 1926.

 Called wave mechanics, which incorporated the principles 
of quanta introduced by Planck, and the wave-particle 
duality principle introduced by de Broglie. 

 The motion of electrons in a crystal can be described by wave 
theory.
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The one-dimensional, nonrelativistic （非相对论）Schrodinger's 
wave equation

the wave function

the potential function
assumed to be independent of time

the mass of
the particle

2 2

2

( , ) ( , )
( ) ( , )

2

x t x t
V x x t j

m x t

   
   

 
 
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Using the technique of separation of variables （分离变量法）

a function of the position a function of time

Substituting this form of the solution into Schrodinger's wave 
equation:

Dividing it by the total wave function

(nonrelativistic)=>
a function of position   =    a function of time  = constant         

( , ) ( ) ( )x t x t  

2 2

2

( ) ( )
( ) ( ) ( ) ( ) ( )

2

x t
t V x x t j x

m x t

      
 

 
 

2 2

2

1 ( ) 1 ( )
( )

2 ( ) ( )

x t
V x j

m x x t t

 
 

  
 

 
 
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 The time-dependent portion

a separation constant

The solution

is the radian frequency（角频率）/ h

( / )( ) j h tt e  

We have 

Then /E
h

   

The separation constant is equal to the total energy E of the 
particle

---a sinusoidal wave 

1 ( )

( )

t
j

t t










 or / 2E hv E h  
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 The time-independent portion

This time-independent Schrodinger's wave equation can 
also be justified on the basis of the classical wave equation.

 The time-independent classical wave equation, in terms of 
voltage, 

From the wave-
particle duality 
principle

2 2

2

1 ( )
( )

2 ( )

x
V x E

m x x




 
 




2

2 2

( ) 2
( ( )) ( ) 0

x m
E V x x

x

 
  

 

2

2

p
T E V

m
  

2 2

2 2

( )
( ) ( ) 0  let  ( )

p

V x
V x x V x

x v

 
 


（ ）=

2 2
2

2 2 2

2 2 2
( ) ( ) ( )

2p

m p m
E V

v m

 


   
 
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Physical Meaning of the Wave Function

the wave function

a probability density function, or the probability of finding 
the particle between Δx and Δx + dx at a given time

In classical mechanics, the position of a particle can be determined precisely. 
In quantum mechanics, the position of a particle is found in terms of a 
probability independent of time. 

independent of time

Comparisons:

--- to use the wave function to describe the behavior of an electron in a crystal

---in agreement with the Heisenberg uncertainty principle

( / )( , ) ( ) ( ) ( ) j E tx t x t x e      

2
( , )x t dx

2* *( , ) ( , ) ( ) ( ) ( )x t x t x x x     
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Boundary Conditions

 Since represents the probability density function

 The wave function and its first derivative must have the following 
properties if the total energy E and the potential V(x) are finite 
everywhere.

Condition 1. Ψ(x) must be finite, single valued and continuous.
If Ψ(x) were infinite, the probability of finding the particle at  

some point would be certain. – violate the uncertainty principle.   

Condition 2.               must be finite, single-valued, and continuous.

2
( ) 1x dx







2
( , )x t

2

2 2

( ) 2
( ( )) ( ) 0

x m
E V x x

x

 
  

 
The second derivative is finite, so the first derivative is continuous. 

( )x
x






Application of Schrodinger’s Wave EquationApplication of Schrodinger’s Wave Equation

 Electron in Free Space

 Consider the motion of an electron in free space. 

 There is no force acting on the particle, then the potential 
function V(x) will be constant.  Assume V(x)=0.

 Then the time-independent wave equation:
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Its solution

a traveling wave
in the +x direction

a traveling wave
in the -x direction

2

2 2

( ) 2
( ) 0

x mE
x

x

 
 

 

  2 2
exp[ ] exp

jx mE jx mE
x A B

 
   

  
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 Recall that the time-dependent portion

Then the total solution for the wave function

 Assume, there is the +x traveling wave, which is 

The wave number

the wavelength

The probability density function is a constant  AA*. 

A free particle with a well-defined momentum can be 
found anywhere with equal probability. 
a precise momentum implies an undefined position. 
 in agreement with the Heisenberg uncertainty principle

( / )( ) j h tt e  

 , Aexp ( 2 ) Bexp ( 2 )
j j

x t x mE Et x mE Et
              

 , Aexp[ ( )]x t j kx t  

2
k






2

h

mE
 

----Travelling wave
（行波）
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The Infinite Potential Well (无限深势阱)

The problem of a particle in the infinite potential well is 
a classic example of a bound particle.

Fig Potential function of 
the infinite potential well.

The particle is assumed to exist in region II.

The time-independent 
Schrodinger's wave equation

Assume V=0 in region II

Its solution

2

2 2

( ) 2
( ( )) ( ) 0

x m
E V x x

x

 
  

 

2

2 2

( ) 2
( ) 0

x mE
x

x

 
 

 

  1 2A cos A  sinx Kx Kx  

2

2mE
K 


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The wave function must be zero in both regions I and region III since the 
probability of finding the particle in regions I and region III is zero.

=> One boundary condition is that the wave function must be continuous

=> A1 = 0 and

Since

Finally, the time-independent wave solution is

The electron in the infinite potential well is a standing wave solution

( 0) ( ) 0x x a    
n

K
a




*( ) ( ) 1x x dx 





2 2
20

sin 1
a

A Kxdx  2

2
A

a


2
( ) sin( )  when  1, 2,3...

n x
x n

a a

   ----standing wave 
（驻波）
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 The free electron is represented by a traveling wave. 
 The bound particle is represented by a standing wave.

Comparison:

Equating the two expressions for K. we obtain

The total energy can then be written as

For the particle in the infinite potential well, the wave function is

 the energy of the particle is quantized.
 contrary to results from classical physics, which would allow 

the particle to have continuous energy values.

2 2
2

2 2

2
n

mE n
k

a


 


2 2 2

22n

n
E E

ma


 



2
( ) sin       

n
x Kx K

a a

  
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Consider an electron in an infinite potential well of width 5 A.
To calculate the first three energy levels of an electron in an 
infinite potential well.

Solution:

Example

2 34 22 2 2

2

2
2 19

31 10 2

(1.054 10 ) )
(2.41 10 )

(2(9.11 10 )(5 10 )2n

n
E

m

n
J

a
n

 


 


 


 




2 19
2

19

(2.41 10 )
(1.51) 

1.6 10n

n
n eVE






 



1 2 31.51     6.04     13.59 E E EeV eV eV  
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Fig Particle in an infinite potential well: 
(a) Four lowest discrete energy levels.
(b) Corresponding wave functions.
(c) Corresponding probability functions

As the energy increases, 
the probability of
finding the particle at 
any given value of x 
becomes more uniform.
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The Step Potential Function (阶跃势函数)

Incident particles

• A flux of particles is incident on the 
potential barrier.
• The total energy of the particle is 
less than the barrier height, or E < V0.
• The wave equation

In region I, V = 0

the incident and reflected particles are represented by traveling waves
A1 A1

* is the probability density function of the incident particles
vi A1 A1

* the flux of incident particles; vr B1 B1
* the flux of reflected particles

2

2 2

( ) 2
( ( )) ( ) 0

x m
E V x x

x

 
  

 
2

1
12 2

( ) 2
( ) 0

x m
x

x

 
 

 
1 1

1 1 1 1 2

2
( )     ( 0)    jK x jK x mE
x A e B e x K    



vi is the velocity of the incident wave, and vr is the velocity of reflected wave. 
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In region II, the potential is V = V0 Since E < V0,

 One boundary condition: the wave function must remain finite

=> B2 = 0   =>

 The second boundary condition: The wave function at x = 0 must be 
continuous => =>

 The third boundary condition: the first derivative of the wave function 
must also be continuous

=>

=>

2
2

0 22 2

( ) 2
( ) ( ) 0

x m
V E x

x

 
  

 
2 2 0

2 2 2 2 2

2 ( )
( )     ( 0)    K x K x m V E
x A e B e x K   
   



1 2(0) (0)  1 1 2A B A 

1 2

0 0

( ) ( )

x x

x x

x x

 

 

 


 

2 2
2 1 2 1 1 1 1 2 1

1 22 2 2 2
2 1 2 1

( 2 ) 2 ( )
    

( ) ( )

K jK K K A K K jK A
B A

K K K K

   
 

 

2
2 2( )     ( 0)K xx A e x  
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The reflected probability density function

Reflection coefficient

the ratio of the reflected 
flux to the incident flux

In region I, V = 0 so that E = T (the kinetic energy of the particle)

=>

=> The incident velocity and the reflected velocity

The reflection coefficient is

2 2 2 2 *
* 2 1 1 2 2 1 1 2 1 1

1 1 2 2 2
2 1

( 2 )( 2 )

( )

K K jK K K K jK K A A
B B

K K

    
 



*
1 1

*
1 1 1

rv B B
R

v A A

 


 

21

2
T mv

2
2 2

1 2 2

2 1
( )
2

m v mv
K mv m  

  

1 1i rv K v K
m m

    
 

* *
1 1 1 1

* *
1 1 1 1 1

1rv B B B B
R

v A A A A

  
  

  
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 In Region I, the result of R=1 implies that all of the particles 
incident on the potential barrier for E < V , are eventually 
reflected. --- consistent with classical physics

 In region II, 

For the case of E < V0, the coefficient A2 is not zero.
There is a finite probability that the incident particle will 
penetrate the potential barrier and exist in region II.

--- difference between classical and quantum mechanics

Although there is a finite probability that the particle may 
penetrate the barrier, since the reflection coefficient in region 
I is unity, the particle in region II must eventually turn around 
and move back into region I.

2
2 2( ) K xx A e 
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Example:
Consider an incident electron that is traveling at a velocity of 
1×105 m/s in region I. To calculate the penetration depth of a 
particle impinging on a potential barrier V0＝2E.

With V( x )=0, the total energy is also equal to the kinetic energy

Solution

We want to determine the distance x = d at which the wave function
magnitude has decayed to e-1 of its value at x = 0.

The wave function:

The distance

2 21 24.56 10 2.85 10  e
1

V
2

E JT mv      

2 2
2 2 2 0( )      2 ( ) /K xx A e K m V E    

2 2

2 (2 ) 2
1

m E E mE
d d


 

 
2 34

10

31 21

1.054 10
11.6 10

2 2(9.11 10 )(4.65 10 )
d m

mE




 


   

 


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The Potential Barrier

Fig The potential barrier function

A flux of incident particles originating
on the negative x axis travel in the +x
direction.
 The total energy of an incident particle 
is E < V0

The solutions of the wave equation in regions I, II, and III are

1 1
1 1 1 1 2

2
( )                              jK x jK x mE
x A e B e K   


2 2 0

2 2 2 2 2

2 ( )
( )                            jK x jK x m V E
x A e B e K  
  


1 1

3 3 3( ) jK x jK xx A e B e  
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The coefficient B3 presents a negative traveling wave in region III. 
However,  once a particle gets into region III, there are no potential changes to 
cause a reflection. => B3 =0

We have four boundary relations for the boundaries at x = 0 and x = a 
corresponding to the wave function and its first derivative being continuous.

 We can solve for the four coefficients B1 , A2, B2 ,and A3 in terms of A1

Fig The wave functions through the potential barrier.
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The transmission coefficient, in this case defined as the ratio of 
the transmitted flux in region III to the incident flux in region I

For the special case when E << V0, we find that

There is a finite probability that a particle impinging a potential 
barrier will penetrate the barrier and will appear in region III.

--- tunneling phenomenon（隧穿效应）contradicts classical mechanics

The application of this quantum mechanical tunneling phenomenon:
semiconductor device characteristics, such as in the tunnel diode

* *
3 3 3 3

* *
1 1 1 1

t

i

v A A A A
T

v A A A A

  
 

  

2
0 0

16( )(1 )exp( 2 )
E E

T K a
V V

  

vt: velocity of transmitted particle; vi: velocity of incident particle.
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Example:

Consider an electron with energy of 2eV impinging on a potential 
barrier with V0 = 20 eV and a width of 3 A.
To calculate the probability of an electron tunneling through a 
potential barrier.

The tunneling probability

Solution: 

The transmission coefficient

The tunneling probability may appear to be a small value, but it is not zero.
If a large number of particles impinge on a potential barrier, a significant 
number can penetrate the barrier.

0
31 19

34 22 2

2(9.11 10 )(20 2)(1.6 10 )

(1.054 1

2

0 )

( )m V E
K

 



  



 



2
0

10 10 6

0

16(0.1)(1 0.1) [ 2(2.17

16( )(1 )exp( 2 )

  10 )(3 10 = exp )] 3.17 10

E E
T K a

V V
   







 





Extensions of the Wave Theory
to Atoms

Extensions of the Wave Theory
to Atoms

The One-Electron Atom

Bohr theory: In the atom, the nucleus is a heavy, positively   
charged proton （质子） surrounded by electrons which are light, 
negatively charged particles. 
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The potential function due to the coulomb attraction 
between the proton and electron and is

e is the magnitude of the electronic charge 
is the permittivity of free space0

spherically symmetric →a three 
dimensional problem in spherical 
coordinates.

2

0

( )
4

e
V r

r



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The time-independent Schrodinger's wave equation in three 
dimensional spherical coordinates is

m0 is the rest mass of the electron.

Laplace operator in spherical coordinates can be written as 

By the separation-of-variables technique

2 0
2

2
( , , ) ( ( )) ( , , ) 0

m
r E V r r        



( , , ) ( ) ( ) ( )r R r      

2
2

2 2 2 2 2 2

0
2

1 1 1
( ) (sin )

sin sin

2
    ( ( )) 0

r
r r r r r

m
E V r

  
    



    
    
    

  

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Since the second term is a function of φ only

m is a separation of variables constant

We can define two additional separation-of-variables 
constants l and n for variable θ and r, 

n,l,and m are known as quantum numbers 

Each set of quantum number 
corresponds to a quantum state 
which the electron may occupy.
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The electron energy is written in the form

n is the principal quantum number.

• The negative energy indicates that the electron is bound to the 
nucleus. 
• The energy of the bound electron is quantized.
• If the energy were to become positive, then the electron 
would no longer be a bound particle and the total energy would 
no longer be quantized.
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The solution of the wave equation may be designated by nlm

For the lowest energy state, n = 1, l = 0, and m = 0, the wave 
function is

This function is spherically symmetric, and the parameter ao is 
Bohr radius（波尔半径）.

The radial probability density function （径向概率密度函数）
－the probability of finding the electron at a particular distance 
from the nucleus, 
－proportional to the product
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Fig The radial probability density function for the one-electron atom in the (a) 
lowest energy state (n=1,l=0,m=0) (b) next-higher energy state (n=2,l=0,m=0) 

The most probable
distance from the 
nucleus is at r = a0

The second energy shell is at a 
greater radius from the nucleus 
than the first energy shell.

For the case of n = 2 and l = 1. there are three possible states corresponding to 
the three allowed values of the quantum number m （m=1,-1,0）. The wave 
functions are no longer spherically symmetric.

Electron cloud or energy shell
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The Periodic Table

• Electron spin  (电子自旋)
---The electron has an intrinsic angular momentum, or spin, 
which is quantized and may take on one of two possible values
S=+1/2 and S=-1/2. 
Four basic quantum numbers: n, l, m, s.

Schrodinger's wave equation + Two concepts

• Pauli exclusion principle 
--- In any given system (an atom, molecule, or crystal), no 

two electrons may occupy the same quantum state. 
--- In an atom, no two electrons may have the same set of 

quantum numbers. 
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Table Initial portion of periodic table

1s represents the first energy shell, n=1, l=0, m=0, s=+1/2,-1/2, two electrons.
2s2p represents the second energy shell,

n=2,    l=0,   m=0,               s=+1/2,-1/2, 
n=2,    l=1,   m=0,+1,-1,     s=+1/2,-1/2, 

can accommodate eight electrons.
The energy shell is determined by the main quantum number  n, and can 

accommodate                                         electrons. 

Element Notation n l m s

Hydrogen (1) 1 0 0

Helium (2) 1 0 0

Lithium (3) 2 0 0

Beryllium (4) 2 0 0

Boron (5) 2 1

Carbon (6) 2 1

Nitrogen (7) 2 1

Oxygen (8) 2 1

Fluorine (9) 2 1

Neon (10) 2 1

11s
21s

2 11 2s s
2 21 2s s

2 2 11 2 2s s p
2 2 21 2 2s s p
2 2 31 2 2s s p

2 2 41 2 2s s p
2 2 51 2 2s s p
2 2 61 2 2s s p

1 1
2 2or 

1 1
2 2and 

1 1
2 2or 

1 1
2 2and 

0, 1, 1

1 1,2 2

m
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2

0

2(2 1) 2
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Fig 2D structure of Si atom Fig 3D structure of Si atom 

The inner shells are full and the chemical activity of an element  
is determined primarily by the valence, or outermost, electrons. 
If all of the energy shells are full, the element doest not react 
with other elements and is an inert element （惰性元素）. 
Semiconductor elements are in Group III, V, and VI.



Homework3

A one-dimensional infinite potential well with a 

width of 12 A contains an electron.

(a) Calculate the first two energy levels that the 

electron may occupy. 

(b) If an electron drops from the second energy level 

to the first, what is the wavelength of a photon 

that might be emitted?
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Summary

 The basic concepts of quantum mechanics can be used to describe the 

behavior of electrons under various potential functions. 

 The wave-particle duality principle ：Particles can have wave-like 

behavior and waves can have particle-like behavior.

 Schrodinger's wave equation forms the basis for describing and predicting 

the behavior of electrons.

 applying Schrodinger‘s wave equation to a bound particle ：energy of the 

bound particle is quantized.

 applying Schrodinger‘s wave equation to an electron incident on a 

potential barrier：there is a finite probability of tunneling. 

 applying Schrodinger‘s wave equation to the one-electron ：the periodic 

table.
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