ech Transmission Lines
and waveguides




3.1 GENERAL SOLUTIONS FOR TEM, TE, AND TM WAVES

We assume time-harmonic fields with an et dependence and wave propagation along
the z-axis. The electric and magnetic fields can then be written as

E(x. v, z) = le(x, ¥) + Ze:(x. ¥v)]e IF7,

/ I:_T{.T._h'. z) = [h(x, v)+ fh;{x,}'}le_“{ﬁ:,
—\ / / e(X, y) and h(x, y) represent the transverse
17>\ . . electric and magnetic field components,
/ X fU X
r"f f
(a)

and ez and hz are the longitudinal electric
and magnetic field components.

(b)

FIGURE 3.1 (a) General two-conductor transmission line and (b) closed waveguide.

If conductor or dielectric loss Is present, the propagation constant will be complex; jf5
should then be replaced with y = a + j5.



Assuming that the transmission line or waveguide region is source free,

aF
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TEM Waves

Transverse electromagnetic (TEM) waves are characterized by Ez = Hz = 0.

If Ez = Hz = 0, then the transverse fields are also all zero, unless k> =0 (k* = 32).

V2E —I—cﬂz,uéf;: = 0,
The Helmholtz wave equation for Ex is,

dj '*f ').3 j.

b 4 + ) Ex=0, 32 52

ox=  dy- 0z + E, =0.
{als""ﬂfz}ﬁv = _ﬁEEE - _fr'tEEJf

= - - F}_
A similar result also applies to Ey, then Vie(x, y) =0,

V7> = 8%/0x> + 3%/3y” is the Laplacian operator in the two transverse dimensions.



It Is easy to show in the same way that the transverse magnetic fields also satisfy
Laplace’s equation:

Vih(x,y) = 0.

The transverse fields of a TEM wave are thus the same as the static fields that
can exist between the conductors.

In the electrostatic case, we know that the electric field can be expressed as the
gradient of a scalar potential

Er(};‘ #];') = — ?;Cb (X, }")1.

Vi = x(8/0x) + y(9/dy) 1s the transverse gradient operator in two dimensions.
the curl of e must vanish,

Vixe=—jouhz=0.

Using the fact that V.- D=¢€V; . 6=0" Vi (x, y) =0,



The voltage between two conductors can be found as

|
Ilj = (Dl — Cbl = f EI df
1
where &; and &> represent the potential at conductors 1 and 2. respectively.

The current flow on a given conductor can be found from Ampere’s law as

f:%ﬁ~(ﬁi
C

where C 1s the cross-sectional contour of the conductor.

*TEM waves can exist when two or more conductors are present.

 Plane waves are also examples of TEM waves, In this case the transmission line
conductors may be considered to be two infinitely large plates separated to
Infinity.

* A closed conductor (such as a rectangular waveguide) cannot support TEM
waves since the corresponding static potential in such a region would be zero (or
possibly a constant), leading to e = 0.



The wave impedance of a TEM mode can be found as the ratio of the
transverse electric and magnetic fields:

Z 'EI.-"[' {Ul{'{ 'IIII{_{'
TEM = = = |—=n,
H.Lf' p Ve
: : : hx. v) = 5 % 8(x. V).
The other pair of transverse field components gives W y) =z Zx ey

 -E &
LTEM = H'L = \ P
X

Compare wave impedance and characteristic impedance

Characteristic impedance relates traveling voltage and current and is a function of
the line geometry as well as the material filling the line.

Wave impedance relates transverse field components and is dependent only on the
material constants.



The procedure for analyzing a TEM line can be summarized as follows:

1. Solve Laplace’s equation qu)( x, y) =0,

2. Find these constants by applying the boundary conditions for the known
voltages on the conductors.

3. Compute e(x, y) = =Vid(x, y), E(x, v, z) = [8(x, y) + Ze,(x, y)]e /P2,
) ZTEM ’
2 —_— —_—
4. Compute V and | Vi) — &) — @, :f E.di f:jg . di
1 C
5. The propagation constant p =w./lne =k,

the characteristic impedance is given by Z, = V/I .



TE Waves

Transverse electric (TE) waves, (also referred to as H-waves) are characterized
by Ez =0and. H, # 0.

dE,
iBE
5y + JBE;
aE
—jBEx — —
dx
BEF oFE,
0 x dy

o H
— + jBH,
dh}; -
a H.
_jﬁHx_ P ,z
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HH_;,- o H,
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= — jowu Hy,
= — jou Hy,

= — jouH;,

= jweEy,
= jweEy,

= jwe k.

— B o H

H, = P2
ks 0x

H, = =Pz
- ks Oy

EJ'[' — _j{f}ﬁ H'qu

k= dy

E vV — Juiﬁ asz .
- kz  Ox

In this case k. # 0. and the propagation constant g = /k? — k2

IS generally a function of frequency and the geometry of
the line or guide.



from the Helimholtz wave equation.

T
(t + 4 —I—ﬂ") H, =0,

ax2 0y 0z?

since H,(x, v, z) = h,(x, y)e /PZ
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(_ -+ ,,—I—ff;) h, =0,
dx=  dy-

The TE wave impedance is

Z = = =
“TH T H B P

Ex —Ey wou kn

which 1s seen to be frequency dependent. TE waves can be supported inside closed
conductors, as well as between two or more conductors.



TM Waves

Transverse magnetic (TM) waves (also referred to as E-waves) are characterized by

EzXx 0and Hz = 0.

9F _ Jwe 0 E,
ﬂ; + jBEy = — jou Hy, = k2 ay’
dE, — jwe d E,
— 7 — —r | - H;: — = - M
JBEx oy Jw H 2 ax
oFE, OF — B 6
— % = — jouH,, ‘ Ey = {’5 dEz,
ox oy k2 ox
3 H. e
"% jBHy = jweEy, _ —JBOE,
d}' ﬂg 3}; ’
'8 H, OH, _ iwe E
T Ty T/ In this case k. # 0. and the propagation constant g = /k? — k2
HHL.- ;.}HX . . .
o T gy = ek IS generally a function of frequency and the geometry of

the line or guide.
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since F,(x, y, z) = e,(x, y)e /PZ

The TM wave impedance is
Ex —-E, B pn

I = — = — = ,
M H, Hy (e k
which is frequency dependent.

TM waves can be supported inside closed conductors, as well as between two or more
conductors.



The procedure for analyzing TE and TM waveguides
1. Solve the reduced Helmholtz equation, for hz or ez . The solution
will contain several unknown constants and the unknown cutoff wave number, kc.

Y} Y} ' L
;Y L at 8t o,
f,,—l-f1+i:;’ h, =0, —+ —+k|e=0,
dx<  dy- dx<  dy- by, _ Joc I
- - —jB 9 H- =Ty
- - T = 3 - . C o
2. find the transverse fields from hz or ez from K Y
_ —JBAH: TR ax
=5 o _ —JBIE,
r — —jepe d H. ! k2 dx
Tk dy 5 _ —JBIE,
E - jtu;[ﬁ s f{g ay '
TR ax

3. Apply the boundary conditions to the appropriate field components to find the
unknown constants and K..
4. The propagation constant the wave impedance are

For — Ey . _-E}' W kn ZTg = Ey _ _E}' _ p _ B
T Hy - H. f - B’ Hy Hy (ere k




Attenuation Due to Dielectric Loss

If a4 IS the attenuation constant due to dielectric loss and ac is the attenuation
constant due to conductor loss, then the total attenuation constant is a = a4 + a..

Attenuation caused by conductor loss can be calculated using the perturbation
method, determined by the field distribution in the guide.

The attenuation due to a lossy dielectric material can be calculated from the
propagation constant. -

. —_— 1 [ 22
r I-"ﬁ SInCe v d- —|_ X=- == a —|— ; (—) . fOl X < a.
Y = g —|— J‘ﬂ = "l,"lf 1"15 — k= =\ a

k*tand __
= \-"ﬁ k2 — w? poege (1 — jtan ). % =g Np/m (TE or TM waves).
y = %; — k2 + jk*tané It can also be used for TEM lines, where kc =0,
——  iCtans by letting = k:
| k= — k- + — p—
b Ve =k k tan 8
2 tan s ay = - ; Np/m (TEM waves).
Y +JB.  k . the (real) wave number ~



3.2 PARALLEL PLATE WAVEGUIDE

* The simplest type of guide that can support TM and TE modes; it can also support a
TEM mode since it is formed from two flat conducting plates, or strips

YA

TEM Modes

the TEM mode solution can be obtained by solving
Laplace’s equation

€, L

F} i
Vid(x,y) =0, for0<=x<W 0=<y=<d.

¥z

the strip width, W, is assumed to be much
greater than the separation, d, so that

W

the boundary conditions d(x,0) =0,
d(x,d)y=V,.
Because there 1S no variation in X,

fringing fields and any x variation can be d(x,y) = A+ By,

Ignored.

D(x, 1} = I,._;,Ef d.



The transverse electric field is,

Vo
e(x, y) = -V, d(x, y) = —}—.
d

so that the total electric field is

—jkz *.E E—jff.-‘:’

E(x, y, z) = &(x, y)e v
d

ot

where k = w, /Ji€ 1s the propagation constant of the TEM wave

1 V
H(x,y,2) = h(x, HE’J‘{”" —rx E(x,y, 2) = §— o Jkz
1 nff

where n = /ut/€ 1s the intrinsic impedance of the medium between the parallel plates.

The voltage of the top plate with respect to the bottom plate

d
r=- f Eydy= Vee kz,
y=0



The total current on the top plate can be found from Ampere’s law or the surface
current density:

W _ W _ W wv, .
I = f Js-zdx = f (—yvx H) -zdx = H,.dx = e~ /2
x=0 x=0 x=0 nd

V' nd

the characteristic impedance Is 7 = 7=

which is seen to be a constant dependent only on the geometry and material
parameters of the guide.
The phase velocity is also a constant:

W 1

Vp=— = .
B e

which is the speed of light in the material medium.




TM Modes

Since H,=0 (_f} + ; +k§) e.=0, With d/dx = 0:
dx<  dy-

32
(31'3 + ;{;) ez(x,y) =0,

where k. = \/ k% — B2 is the cutoff wave number. Ex, vy, 2z) = ez(x,y) e JPZ.

The general solution is ez(x, y) = Asin key + Bcos key,

subject to the boundary conditions that

e;(x,y)=0, aty=0,d.

This impliesthatB=0and k. d=nnforn=0,1,2,3.. .,

Hnit

d



—_—

p = ,,#fffj — k2 = ,ﬁfﬁ'z — (nm/d)>.

The solution for e,(x, y) Is then

. nmy L 1 cin BV _ gz
e,(x, y) = A, sin = E x,y, z) = A,sin —=e /P2,
G

The transverse field components

Jwe nwy _ .
HX pe .’{lﬁ- cos e jﬁz.
ke d
— jp nmwy _
E, = A, cos e /P?.
g c d
E;[' — HL — 0,

Observe that for n =0, B = k = w. /€, and that £, = 0.

The Ey and Hx fields are then constant in y, so that the TM, mode is actually
Identical to the TEM mode.



For n > 0, however, the situation is different. Each value of n corresponds to a
different TM mode, denoted as the TMn mode, and each mode has its own
propagation constant and field expressions.

It can be seen that £ is real only when k > kc. Because k = w, /1€
ke n
27 /e 2d/pe

Thus, the TM mode (for n > 0) that propagates at the lowest frequency Is the
TM1 mode, with a cutoff frequency of

f.=1/2d /jie

At frequencies below the cutoff frequency of a given mode, the propagation
constant is purely imaginary, corresponding to a rapid exponential decay of the
fields. Such modes are referred to as cutoff modes, or evanescent modes (;E#12).

RS TIEAEBLERN, EMEPEHFEIRR Y
BB AR 7

The cutoff frequency of the TMn mode can be found as 7 =




The wave impedance of a TM mode, THEECEK 2 BESEK 2 81 kK ?
. 5 WEL? HIB B E ? KA ?
— Ly n

Z i = = —,
M H, we k

Which is pure real when f > fc but pure imaginary when f < fc.

The phase velocity is also a function of frequency:

v, = —,
B
and 1s seen to be greater than 1/, /e = w/k, the speed of light in the medium, since g < k.

The guide wavelength is defined as

27
hg = 3 Note that hg > A= 2 /k.

_ 2d

a cutoff wavelength for the TMn modeis ,
n

.
M



the time-average power passing a transverse cross section of the parallel plate guide is

1 W d - 1 W d
P, = —Ref / E x H**E'd}«fdx=——Re/ / E,H; dydx
2 x=0J y=0 2 x=0Jy=0

_ WRe(B)we

242

d
. , NITY
| Anl” f COos”™ Sl dy =
y=0 d

[ WRe(B)wed

A, |° forn >0

4 k2
WRe(B)wed

> 1A, |° forn=0

Po is positive and nonzero when f is real, which occurs when f > fc. When the
mode 1s below cutoff, B is imaginary, and then Po = 0.



Conductor loss can be treated using the perturbation method. Thus,

B
2P,

o =

where Po is the power flow down the guide in the absence of conductor loss, and
P, Is the power dissipated per unit length in the two lossy conductors

RN\ W w22 R, W
=2( ) [ W ax =SB

where Rs Is the surface resistivity of the conductors.

2we Ry 2kR;
U = v Np/m, forn > 0.
Bd  PBnd
the TEM mode is identical to the TMO mode for the parallel plate waveguide, so
Rs
o, = — Np/m.

nd



TE Modes

TE modes, characterized by Ez = 0, can also propagate in a parallel plate waveguide.

_ AL )
d/0x = 0.} —) (5 5+ ;’{;) h;(x, y) =0,
y

where k. = \/k* — B2 is the cutoff wave number and H,(x, y, z) = h,(x, y)e /P2
h,(x,y) = Asink.y + Bcos k.y.

The boundary conditions are that Ex =0 aty = 0, d; Ez is identically zero for TE modes.

_ —Jou HHE‘ E, — — jw

- Acos k.y — Bsink.y) e /P?,
R o (Acosk .

From E,

applying the boundary conditions

nit

A =0 and k. = - n=1,2,3...,




The final solution for Hz i1s then

niy _
Hy(x, y) = Bycos f" e~ JPZ
(i

The transverse fields can be computed

Jw . onmy
Ey = B, sin —= ¢~ /P2,
.||r'l-|-_" {_.IJI
Jb , . onmy _;
H, = Z— B, sin e JPZ,
i .I'r'l.-f_" ﬂ‘r
-E‘L" — H\:’ —t 0.

The propagation constant of the TEn mode is given as

B = \ e - (=) g

d

which is the same as the propagation constant of the TMn mode.



n

~ 2d. i

The cutoff frequency of the TEn mode is fe

which iIs also identical to that of the TMn mode.

The wave impedance of the TEn mode is,  Zr= = i“' - ”“;"’ - f;

The power flow down the guide for a TEn mode can be calculated as

1 W d _ 1 W d
B = —Rﬁf f Ex H -zdydx = ;Ref f ExH} dy dx
2 x=0J y=0 < x=0J y=0 }

1 ) .
= wi:;,} | B,|"Re(p), for n = 0,

which is zero If the operating frequency Is below the cutoff frequency (8 imaginary).

Note that if n = 0, then Ex = Hy =0, and thus Po = 0, implying that there is no TEO
mode.



_ 2k2 R _ 2k2 R Np/n.
wupfd kpnd

the attenuation due to conductor loss for TE modes Is given by «.

N ™,
and |
R,
TEM
1
cutoff TE
0 I N —
0 1 2 3 4 5 6 7 8 9 10
k _ kd
k.

Attenuation due to conductor loss for the TEM. TM;y. and TE; modes of a parallel
plate waveguide.



TABLE 3.1

Summary of Results for Parallel Plate Waveguide

Quantity TEM Mode TM,; Mode TE;; Mode
k w. /e W, /€ N
ke 0 nm/d nm/d
B k = o Jjie ,\;ﬁ y,.*kg — kZ
A oo 2wk =2d/n 2m/ke=2d/n
Ag 2/ k 27/ p 2/ B
Up w/k =1/ e w/ f w/f
g (ktan§)/2 (k* tan8)/2p (k* tan8)/2p
@, Rs/nd 2kR./Bnd 242 R/ kBnd
E, 0 Asin (nmwy/dye— /P2 0
H, 0 0 B cos (nm y/dye— /P2
Ex 0 0 (jowu/ ke) Bsin (nm y/d)e— /P2
E, (= Vo/dye™ P2 (= jB/ko)Acos (nmy/d)e /P2 0
Hy (Vo /ndye—/F? (jwe[ k) A cos (nm y/d)eP? 0
Hy 0 0 (jB/ ke) B sin (nm y/d)e—/P?
Z ZTEM = nd/ W Z1m = Bn/k ZTE = kn/p




3.3 RECTANGULAR WAVEGUIDE

Rectangular waveguides were one of the earliest types of transmission lines used to
transport microwave signals, and they are still used for many applications , such as
couplers, detectors, isolators, attenuators, and slotted lines with the waveguide bands

from 1 to 220 GHz.
Because of the trend toward miniaturization and integration, most modern microwave
circuitry is fabricated using planar transmission lines such as microstrips and stripline
rather than waveguides.
There 1s, however, still a need for waveguides in many cases, including high-power
systems, millimeter wave applications, satellite systems, and some precision test
applications.



TE Modes

The hollow rectangular waveguide can propagate TM and TE modes but not TEM
waves since only one conductor is present.

TE waveguide modes are characterized by fields with Ez = 0,
4 while Hz must satisfy the reduced wave equation

/ 92 82
b — + — + 1"1:, hg(l, }} = (.
i dl_ di'_

0

a X with H,(x, y, z) = hy(x, y)e /PZ
‘ a = Db. ke = +/k* — B2 is the cutoff wave number.

The partial differential equation can be solved by the method of separation of variables by
letting

f(x, y) = X(x) 1”(}-']



1 de-l— 1 djf_i_ﬁ_g _0o
X dx? Y dy? -

C

each of the terms must be equal to a constant,

d* X

=+ ks X =0,

d*Y 3o ot ﬁ: G
3 — f{;.} =0,

':'}:_

The general solution for hz can then be written as
hy(x, y) = (Acos kyx + Bsinkyx)(C cos kyy + Dsinkyy).

— Jjw . :
= Z/o8 ky(Acos kyx + Bsinkyx)(—Csink,y + Dcoskyy),

ey -
C

[og , |
ey = / ; ky(—Asinkyx + Bcos kyx)(Ccos kyy+ Dsinkyy).
i

apply the boundary conditions ex(X, ) at §

ey(x,y) =0, at x =0, a.



D=0, and ky = nz/b for n =0, 1, 2....

B =0and ky = n;:'r,"a form=0,1, 2....

The final solution for Hz 1s then

mitx mry _
HE(A'.. __}’r.. f} == ;’il,r;r”} COs COs bw & jﬁz.
&l

The transverse field components of the TEmn mode

LN mmx . nmy _;
= J —— App COS sin —=— e~ /PZ,
f{E |
— jopmi . mITX nmwy _,
E, = %Am sin cos —=e /P,
kza a b
Jjpmm . mmXx nmy _,
Hy = —— Ayp sin cos e JPZ,
k-a a b
B nm mrTx . nmwy _;
H;; — jT:‘{l_m” CDS 511] = e Jﬁz,
K a b



mi

The propagation constant is B=\/k— k= VK- (—)2 - (%)

e

which 1s seen to be real, corresponding to a propagating mode,

L I."I(H}I'T)j N (fm')f
B A b/

Each mode (each combination of m and n) has a cutoff frequency f_.,

; ke 1 ( mar )3 N (rm )3
mn " ow e 2m ey \ a b/~

The mode with the lowest cutoff frequency is called the dominant mode; a > b, the lowest

cutoff frequency occurs for the TE10 (m =1, n = 0) mode:
1

2a. /l€
Thus the TE10 mode is the dominant TE mode and, as we will see, the overall
dominant mode of the rectangular waveguide.

Since E and H are all zero if both m = n = 0; there is no TE,, mode.

feyy =



If more than one mode Is propagating, the waveguide is said to be overmoded.

7 - Ey B _EP' .Y
T H, T H B

where n = /it/€ 1s the mtrinsic impedance of the material filling the waveguide.

Note that Z;¢ is real when p is real (a propagating mode) but is imaginary when [ is
Imaginary (a cutoff mode).

The guide wavelength is defined as the distance between two equal-phase planes

) 2 21T
ﬁ'g o ,B k
A, the wavelength of a plane wave in the medium filling the guide.

= A.

The phase velocity is greater than the speed of light (plane wave) in the medium.



In the vast majority of waveguide applications the operating frequency and guide
dimensions are chosen so that only the dominant TE10 mode will propagate.

for the TE,, mode fields:

X

H, = Ajpcos —e /P?,
a

— jwpa . TX

E, = Ay sin — e~ P72,
’ T el

jBa ., . mx _;

H, = Ay sin — e~ /P2,
T a

Eﬂr’ = Ez = HL = U
The cutoff wave number and propagation constant for the TE10 mode are,

.I'r'l.-f_" p— HJ."I I':_J'q

B =+ k>— (z/a)’.



The power flow down the guide for the TE10 mode can be calculated as

Po = —Ref f Ex H* zdydx

_ —Re/ f Ey HY dydx
_ wpa’ Re(B)| Aol f f sin? 22
‘ __L"ZD' il

2| Aial? b
_ ona 10l Dpep).
Am-

Note that this result gives nonzero real power only when f is real, corresponding
to a propagating mode.



The power lost per unit length due to finite wall conductivity is,

R [ -,
P = —‘f | |7 de,
2 Jc

where Rs Is the wall surface resistance, and the integration contour C encloses the
Inside perimeter of the guide walls.

There are surface currents on all four walls, but from symmetry the currents on the top
and bottom walls are identical, as are the currents on the left and right side walls. So we
can compute the power lost in the walls at x = 0 and y = 0 and double their sum to
obtain the total power loss. The surface current on the x = 0 (left) wall is

The surface current on the x = 0 (left) wall is

Jo=hx Hlyo=Xx 2H,|y—0 = —VH,|y—0 = —yAjpe 7,



the surface current on the y = 0 (bottom) wall Is

JPa . mx

X
= —Z Aqo sin
ow

e P7 + 3 Ao cos — e /P7,

A A

b a
Po= R [ UgPdy+ Re[ [l + 1l ] n

=0 x=0

23
, a a
= Rs|A1ol” (b—|—5—|—ﬁ )

22

The attenuation due to conductor loss for the TE10 mode is then

o Py 2m*Ry(b+aj2+ pra’/2n?)
“ 2P0 wpa’bp

5

a’ bp kn

(21:-:13 -+ aikj) Np/m.



TM Modes

TM modes are characterized by fields with Hz = 0, while Ez must satisfy the reduced

wave equation
a? 82 )
( + + A,_,.) ez(x, y) =0,

ax>  0y?
with E;(x, v, z) = e,(x, y)e /P? and A‘f. = k* — B2
The general solution is e,(x, y) = (Acos kyx + Bsink,x)(C cos kyy + Dsin kyy).
The boundary conditions can be applied directly to e,
ez(x, y) =0, at x = 0, a,

ez(x, y) =0, at y =0, b.

A=0and ky =mm/afor m=1, 2, 3....

C=0and ky =nx/bforn=1, 2, 3....



mwx . nwy _,
sin —=— e~ /A7,

Ez(.jf.. L}’rq E:} = Bjr”n "?!].11
&l

The transverse field components for the TMmn mode

— jpmm mnx . nNmy _;
E}'[' p— j—..rBH”} COS 5111 - e jﬁz.
an; a
— jpnm . MITX nry _;
v — j—_'r.B_er” 511]. CDS = e Jﬁz.
bkz a b
Jwenm . mIx nwy _
Hy = ——— B, s1n cos —— e /P?
Dk a
— jwemm mmTx . ATy _;
H, = J —— By, cos sin — 2 e~ JPZ,
- aK; a b

the propagation constant Is

/ 2 2
[ ; [ mi s 2 w2
- II;‘-_ B ﬂ-_ - ﬂ-_ B ( ) B ( )

P v ¢ “m'! a b




The cutoff frequencies for the TMmn modes are also the same as those of the TEmn modes.

there 1s no TMO0O, TMO1, or TM10 mode, and the lowest order TM mode to
propagate (lowest fc) is the TM11 mode, having a cutoff frequency of

1 TN 2 T 2

= 5 C) + )’

which is seen to be larger than fc10 , the cutoff frequency of the TE10 mode.
The wave impedance

A Ey B _E_F ~ Bn
™ = H-H -k
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Attenuation of various modes in a rectangular
brass waveguide with a = 2.0 cm.



Summary of Results for Rectangular Waveguide
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EXAMPLE 3.1 CHARACTERISTICS OF ARECTANGULAR WAVEGUIDE

Consider a length of Teflon-filled, copper K-band rectangular waveguide having
dimensions a = 1.07 cm and b = 0.43 cm. Find the cutoff frequencies of the first

five propagating modes. If the operating frequency is 15 GHz, find the attenuation
due to dielectric and conductor losses.

Solution
From Appendix G, for Teflon, » = 2.08 and tan 6 = 0.0004. The cutoff frequencies

are given by c [ fm\2 ni 2
o =22 eV () (7))

Mode m i f-(GHz)

TE
TE
TE
TE, TM
TE, TM

9.72
19.44
24.19
26.07
31.03

M = O =
e i et N



w DIELECTRIC CONSTANTS AND LOSS TANGENTS FOR

SOME MATERIALS

Material Frequency €r tan & (25°C)
Silicon 10 GHz 11.9 0.004
Styrofoam (103.7) 3 GHz 1.03 0.0001
Teflon 10 GHz 2.08 0.0004

Thus the TE10, TE20, TEOL, TE11l, and TM11 modes will be the first
five modes to propagate.

At 15 GHz, the propagation constant for the TE10 mode

B = \/(Eﬂf;/é_‘r)z - (;) - \sz - (3?) —345.1m".

Degenerate mode (f&] R T): different modes have the same cutoff
number, such as TEmn and TMmn




the attenuation due to dielectric loss Is

k% tan &
g = 28

The surface resistivity of the copper walls is (o = 5.8 x 107 S/m)

= 0.119 Np/m = 1.03 dB/m.

| @10 _

R_g = ‘.’.'II EJ = U_UJZ Q-

the attenuation due to conductor loss,

R . |
te = ————(2bn* + a’ k%) = 0.050 Np/m = 0.434 dB/m.
a” bp kn



*TE,, Modes of a Partially Loaded \Waveguide

In some cases of practical interest (such as impedance matching or phase-shifting
sections) a waveguide Is used with a partial dielectric filling.

VA Since the geometry is uniform in the y direction and n =
0, the TEmO modes have no y dependence.

b

-7
ik
€r€o €0 (—,_I + k%})hz = 0. fﬂl 0 =X =1

X~

‘ 2 - -
F ! . (i‘},ﬁ + r’f&)f}z =0, fort < x < a,

where k4 and k, are the cutoff wave numbers for the dielectric and air regions,

B = ,v,f-';;,,,r,-t-; e the propagation constant, S, must be the same in
R — both regions to ensure phase matching (see Section 1.8)
b=k —k of the fields along the interface at x =t.




The solutions f { Acos kgx + Bsinkgx for0 < x <¢
1 = ]
‘ Ccosksla—x)+ Dsmks(a— x) forr < x < a.

We need y and Z electric and magnetic field components to apply the boundary condi-
tions at x = 0, ¢, and a. £, = 0 for TE modes. and Hy, = 0 since /0y = 0. £, 1s found

[ Jwlo

d
Jwg

a

(—Asin kgx + Bcos kgx) forO0<x<t¢

|Csinks(a— x)— Dcoski(a— x)] fortr < x < a.

To satisfy the boundary conditions that Ey =0 at x =0 and x = a requires that B=D = 0.

We next enforce continuity of tangential fields (Ey , Hz) at x = t.

_A C this is a homogeneous set of equations (5%>X
T sinkqt = . S Ka(a — 0). %) , the determinant (43%=) must
Acos kgt = Ccoska(a— t). vanish kytan kgt + kgtank,(a — t) = 0.

There iIs an infinite number of solutions, corresponding to the propagation constants of the
TEmMO modes.



Homework

3.3 Calculate the attenuation due to conductor loss for the TE; mode of a parallel plate waveguide.

3.6 An attenuator can be made using a section of waveguide operating below cutoft, as shown in the
accompanying figure. If a = 2.286 cm and the operating frequency is 12 GHz, determine the required

length of the below-cutoff section of waveguide to achieve an attenuation of 100 dB between the input
and output guides. Ignore the effect of reflections at the step discontinuities.

Propagating ————= J\N
wave -

Evanescent :
Propagating
waves _
wave

3.8 Dernive the expression for the attenuation of the TM;,; mode of a rectangular waveguide due to
impertectly conducting walls.



