
Lecture 9

PN junction (I)
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Introduction

 pn junction 

– p-region an n-region in intimate contact 

 Why is the pn junction worth studying?

It is present in virtually every semiconductor device! 
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Example: CMOS cross-section



Gauss’s Law

The relationship of the electric field E and charge density.

where    is the electric permittivity (F/cm)
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- The integral form in one 
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Poisson’s equation

 The electrostatic potential is defined as:

 Differentiation of the above

 Poisson's equation
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-potential difference as the integral of electric field. 
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Semiconductor Electrostatics in 

Thermal Equilibrium

Outline

 Nonuniformly doped semiconductor in thermal 

equilibrium 

 Relationships between potential, φ(x) and 

equilibrium carrier concentrations, po(x), no(x)

–Boltzmann relations & “60 mV Rule”

 Quasi-neutral situation 
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Nonuniformly doped semiconductor in thermal equilibrium

n-type 

⇒ lots of electrons, few holes

⇒ focus on electrons 

What is the resulting electron concentration 

in thermal equilibrium?

Consider a piece of n-type Si in thermal equilibrium with non-

uniform dopant distribution: 
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OPTION 1: Electron concentration follows doping 

concentration EXACTLY ⇒

Gradient of electron concentration

⇒ electron diffusion 

⇒ not in thermal equilibrium! 

0 ( ) ( )dn x N x
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OPTION 2: electron concentration uniform in space 

Think about space charge density: 

0 ( ) ( )aven x n f x 

0( ) [ ( ) ( )]dx q N x n x  

If Nd(x)≠n0(x)

⇒ρ(x) ≠0

⇒electric field

⇒net electron drift

⇒not in thermal equilibrium
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OPTION 3: Demand that Jn = 0 in thermal 

equilibrium at every x (Jp = 0 too) 

What is no(x) that satisfies this condition? 

( ) ( ) ( ) 0drift diff

n n nJ x J x J x  

Diffusion precisely balances Drift
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Let us examine the electrostatics implications of 

0 ( ) ( )dn x N x
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Space charge density 

0( ) [ ( ) ( )]dx q N x n x  
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Electric Field 

Gauss’s law: 

Integrate from x = 0: 
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Electrostatic Potential 

Integrate from x=0: 
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Boltzmann relations

Relationships between potential, φ(x) and 

equilibrium carrier concentrations, po(x), no(x)
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Using Einstein relation: 
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Integrate: 

Any reference is good 

  0
0 0,
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We can rewrite as: 

0ln
i

nkT

q n
 

0ln
i

pkT

q n
  

If we do same with holes (starting with Jp=0

in thermal equilibrium, or simply using n0p0=ni
2)

/

0

q kT

ip n e 
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“60 mV” Rule 

At room temperature for Si: 

or   060 log
i

n
mV

n
 

     0 025 ln 25 ln 10 log
i i

n n
mV mV

n n
  

EXAMPLE 1:

18 3

0 10 (60 ) 8 480n cm mV mV    
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With holes: 

EXAMPLE 1:

18 3 2 3

0 010 10

(60 ) 8 480

n cm p cm

mV mV

   

    

0ln
i

pkT

q n
  
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Relationship between ϕ, n0 and p0 :
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Quasi-neutral situation 

•Small dno/dx implies a small diffusion current. We do not 

need a large drift current to balance it. 

•Small drift current implies a small electric field and therefore 

a small space charge 

Then 

no(x) tracks Nd(x) well

⇒ minimum space charge

⇒ semiconductor is 

quasineutral

   0 dn x N x

If Nd(x) changes slowly with x→n0(x) also changes slowly 

with x. Why?



Summary of Key Concepts

 It is possible to have an electric field inside a 

semiconductor in thermal equilibrium 

⇒ Nonuniform doping distribution. 

 In thermal equilibrium, there is a fundamental 

relationship between the φ(x) and the equilibrium 

carrier concentrations no(x) & po(x)

– Boltzmann relations (or “60 mV Rule”).

 In a slowly varying doping profile, majority 

carrier concentration tracks well the doping 

concentration. 
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Electrostatics of pn junction in equilibrium
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Doping distribution of an abrupt 

pn junction (metallurgical 

junction)



What is the carrier concentration distribution in 

thermal equilibrium?

First think of the two sides separately:
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Now bring the two sides together. What happens? 



Resulting carrier concentration profile in thermal equilibrium: 

• Far away from the metallurgical junction: 

nothing happens – Two quasi neutral regions

• Around the metallurgical junction: 

diffusion of carriers must counterbalance drift 

– Space  charge region (depletion region)
26
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Question？

Compare the number of majority electrons in the 

n-type region ( or the number of majority holes in 

the p-type region ) before and after the junction 

formation. 
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3.The Depletion Approximation

• Assume the QNR’s are perfectly charge neutral

• Assume the SCR is depleted of carriers (complete 

ionization)

- depletion region

• Transition between SCR and QNR’s sharp at

- -xp0 and xno (must calculate where to place these)
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Depletion region: dipole layer

Now, we want to know n0(x), p0(x), ρ(x), E(x) and ϕ(x).

We need to solve Poisson’s equation using a simple 

but powerful approximation
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Space Charge Density 
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Uncovering of 

impurity ions near 

the junction on 

both sides
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Electric Field

Integrate Poisson’s equation
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Build-in field
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Electrostatic Potential
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－intrinsic semiconductor  

From Boltzman relationship
0ln
i

nkT

q n
  0ln

i

pkT

q n
  

(with ϕ=0 @ n0=p0=ni)

In QNR’s, n0 and p0 are known ⇒ can determine ϕ
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The built-in potential can be looked as the 

potential hill or barrier that keeps electrons on the 

n-type side and keeps holes on the p-type sides. 

Built-in potential（内建电势差）:

2
ln d a

B n p

i

N NkT

q n
     
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From energy band diagram

Energy-band diagram of a pn junction in

thermal equilibrium

•In thermal equilibrium, the 

Fermi energy level is constant 

throughout the entire system.

0lnFi F
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 
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 

• EFi, Ec, Ev bend with the 

distribution of carrier 

concentration.  

Built-in potential : a potential barrier 

for electrons in the n region trying to 

move into the conduction band of the p 

region.
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To obtain ϕ(x) in between, integrate E(x)
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1. Require overall charge neutrality:

0 0p A n Dqx AN qx AN

The depletion region exists in both the p and n materials and 

that equal amounts of charge exist on both side. In order to 

uncover the same amount of charge, the depletion layer will 

extend deeper into the more lightly doped material.

where xp0 and xn0 are the width of depletion region in the p 

side and in the n side, respectively, and A is the cross-

sectional area of the junction.

0

0

p D

n A

x N

x N


41

Still do not know xn0 and xp0 ⇒ need two more equations



2. Require φ(x) to be continuous at x=0;

Two equations with two unknowns — obtain solution:
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Now problem is completely solved!
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The total width of the depletion region W is 

n pW x x 
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Solution Summary



Width of the space charge region:

Field at the metallurgical junction is maximum:
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 
0 0 0

2 s B a d

d p n

a d

N N
x x x

qN N

  
  

 0

2 B a d

s a d

q N N
E

N N










Three Special Cases

 Symmetric junction: Na = Nd
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 Asymmetric junction: Na > Nd

 Strongly asymmetric junction 

0 0p nx x

0 0p nx x

0 0

2 s B
p n

d

x x
qN

 
 0

2 B d

s

q N
E






p+n junction: Na >>Nd 

The lightly-doped side controls the 

electrostatics of the pn junction



Contact Potential 

Potential distribution in thermal equilibrium so far: 
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Question 1: If I apply a 

voltmeter across the pn 

junction diode, do I measure 

φB? 

yes ;no it depends 

Question 2: If I short terminals 

of pn junction diode, does 

current flow on the outside 

circuit? 

yes ; no ; sometimes 
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We are missing contact 

potential at the metal 

semiconductor contacts: 

Metal-semiconductor contacts: junction of dissimilar materials 

⇒ built-in potentials at contacts φ mn and φ mp . 

Potential difference across structure must be zero 

At equilibrium, the diffuse current equals to the drift current, so there is 

no net current. 

⇒ Cannot measure φB. 

Net current: macroscopical

view

Diffusion current and drift 

current: microcosmic view.



Summary of Key Concepts

•Electrostatics of pn junction in equilibrium

– A space charge region surrounded by two quasi-neutral 

regions formed.

•To first order, carrier concentrations in space charge region 

are much smaller than the doping level

⇒ can use depletion approximation

•From contact to contact, there is no potential buildup

across the pn junction diode

– Contact potential(s).

48



Homework8

A silicon pn junction in thermal equilibrium at T =300 K 

is doped such that EF -EFi =0.365 eV in the n region 

and EFi - EF =0.330 eV in the p region.

(a) Sketch the energy-band diagram for the pn junction. 

(b) Find the impurity doping concentration in each 

region. 

(c) Determine Vbi



Homework9


