Journal papers

  1. R. Zhang, X.-C. Li and Q. H. Liu, “Tunable terahertz intrinsic chiroptical absorption empowered by accidental bound states in the continuum”, Applied Physics Letters, 125(21), 2024. https://doi.org/10.1063/5.0237546.
  2. Hai-Bing Zhan; Xiao-Chun Li; Chang-Sheng Sun;Ken Ning,“Low-Loss Perpendicular Transition Between Rectangular Dielectric Waveguide and Microstrip Line at W-band,” IEEE Transactions on Microwave Theory and Techniques,25 October 2024,Early access. DOI: 10.1109/TMTT.2024.3476190
  3. Yu-Xu Liu, Xiao-Chun Li*, “A Dual Component Electromagnetic Probe for Efficient Near-Field Measurement,” IEEE Antennas and Wireless Propagation Letters, 21 June 2024, Early access. DOI: 10.1109/LAWP.2024.3417428
  4. X. He, Y. -X. Liu and X. -C. Li, "A Wideband Dual-Component Electric Probe for Near-Field Measurement," in IEEE Sensors Journal, doi: 10.1109/JSEN.2024.3406637. 
  5. C. -S. Sun, X. -C. Li, H. -B. Zhan and K. Ning, "A Low-Loss and High-Bandwidth Hollow Rectangular Dielectric Waveguide for Sub-THz Applications," in IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2024.3382399.
  6. H. -B. Zhan, X. -C. Li and C. -S. Sun, "Low-Loss Horizontal Transition Between Rectangular Dielectric Waveguide and Microstrip Line at W-Band," in IEEE Microwave and Wireless Technology Letters, vol. 34, no. 4, pp. 371-374, April 2024, doi: 10.1109/LMWT.2024.3368444. 
  7. Z. Gao, Y. -X. Liu, X. -C. Li, Z. -M. Wu, Z. Li and T. Tan, "An Equivalent Radiation Source Reconstruction Method Based on Enhanced Artificial Neural Network," in IEEE Transactions on Electromagnetic Compatibility, doi: 10.1109/TEMC.2024.3390233
  8. Zhang R, Li X C, Liu Q H. "Switchable and multifunctional terahertz photonic devices based on VO2-assisted phase encoded metasurfaces"[J]. Optics & Laser Technology, 2024, 174: 110568.
  9. Y. -X. Liu, X. -C. Li, X. He, Z. -H. Peng and J. -F. Mao, "An Ultra-Wideband Electric Field Probe With High Sensitivity for Near-Field Measurement," in IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-10, 2023, Art no. 8001910, doi: 10.1109/TIM.2023.3261946.
  10. X. He, X. Li, Y. Liu and J. Mao, "A High-Performance Miniaturized Wideband Active Electric Probe Design," in IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 12, pp. 2866-2870, Dec. 2023, doi: 10.1109/LAWP.2023.3302912.
  11. Y. Zhu, X. -C. Li and J. -F. Mao, "Mode Composite Substrate Integrated Coaxial Line based on Substrate Integrated Coaxial Line and Periodic L-shaped SSPP Structure," IEEE Transactions on Components, Packaging and Manufacturing Technology, doi: 10.1109/TCPMT.2023.3267839.
  12. Z. -M. Wu, L. Ji, X. -C. Li, H. -B. Zhu and J. -F. Mao, "A Slow Wave Folded Ridge HMSIW Using Spoof Surface Plasmon Polaritons Structure and Its Application in Coupler Design," IEEE Transactions on Components, Packaging and Manufacturing Technology, doi: 10.1109/TCPMT.2023.3278736.
  13. Z. Li, X. -C. Li, Z. -M. Wu, Y. Zhu and J. -F. Mao, "Surrogate Modeling of High-Speed Links Based on GNN and RNN for Signal Integrity Applications,"  IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2023.3251658.
  14. X. He, X. -C. Li*, Y. -X. Liu and J. -F. Mao, "A Miniature Wideband Active Magnetic Probe Design With High Spatial Resolution and High Sensitivity for Near-Field Measurement," IEEE Microwave and Wireless Technology Letters, doi: 10.1109/LMWT.2022.3229498.
  15. X. Zhang, S. M. Liu, R. Zhao, X. C. Li*, J. F. Mao, L. J. Jiang and P. Li, “A Wave Equation-Based Hybridizable Discontinuous Galerkin-Robin Transmission Condition Algorithm for Electromagnetic Problems Analyzing,” IEEE Transactions on Microwave Theory and Techniques, 2022.
  16. X. Zhang, P. Li, X. C. Li*, L. J. Jiang and J. F. Mao, “A Hybridizable Discontinuous Galerkin Time-Domain Method with Robin Transmission Condition for Transient Thermal Analysis of Three-Dimensional Integrated Circuits,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 12, no. 9, pp. 1474-1483, Sept. 2022.
  17. K. Ning, X. -C. Li, Y. Liu and J. Mao, "Two-Material Ridged Substrate Integrated Coaxial Line for Monomode Bandwidth Improvement," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 8, pp. 1358-1367, Aug. 2022.
  18. K. Ning, X. -C. Li, G. Xiao, Z. -R. Xu and J. Mao, "Skew-Symmetric Slotted Waveguide With Mode Select Effect," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 7, pp. 1150-1159, July 2022.
  19. L. Ji, H. -B. Zhu, X. -C. Li and J. -F. Mao, "Two-Material-Filled Ridge Half-Mode Substrate Integrated Waveguide for Monomode Bandwidth Enhancement,"  IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, pp. 1035-1038, Sept. 2022.
  20. Yan Li, Xiao-Chun Li*, Yifan Yang, and Jun-Fa Mao, “An Unconditionally Stable 2-D Stochastic WLP-FDTD Method for Geometric Uncertainty in Superconducting Transmission Lines” IEEE Transactions on Applied Superconductivity, vol. 32, no. 2, pp.1-9, Mar. 2022.
  21. X. He, X. -C. Li*, Z. -H. Peng, Y. -X. Liu and J. -F. Mao, "An Ultrawideband Magnetic Probe With High Electric Field Suppression Ratio," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-9, 2021
  22. Lei Ji, Xiao-Chun Li*, Xin He and Jun-fa Mao, “A Slow Wave Ridged Half-Mode Substrate Integrated Waveguide With Spoof Surface Plasmon Polaritons,” IEEE Transactions on Plasma Science, vol. 49, no. 6, pp. 1818-1825, June 2021.
  23. Ken Ning, Xiao-Chun Li*, Han Zhang and Jun-fa Mao, “Ridged Substrate Integrated Coaxial Line for Wideband Millimeter-Wave Transmission,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 6, pp. 2981-2988, June 2021.
  24. Yu-Xu Liu, Xiao-Chun Li*, Zhi-He Peng, Xin He, and Jun-Fa Mao, “A pair of parallel differential magnetic‐field probes with high measurement accuracy and high electric‐field suppression ratio,” International Journal of RF and Microwave Computer‐Aided Engineering, 31:e22478, 2021.
  25. Yi-fan Yang, Xiao-Chun Li*, Yan Li and Jun-fa Mao, "A Compact 2-D Stochastic FDTD Method for Uncertainty Analysis in Superconducting Transmission Lines," IEEE Transactions on Applied Superconductivity, vol. 30, no. 8, pp.1-7, Dec. 2020.
  26. Lei Ji, Xiao-Chun Li*, Jun-Fa Mao, “Half-Mode Substrate Integrated Waveguide Dispersion Tailoring Using 2.5-D Spoof Surface Plasmon Polaritons Structure,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp.2539-2550, May. 2020.
  27. Zi-Wei Pei, Xiao-Chun Li*, Yan Li, and Jun-Fa Mao, "Transient Coanalysis of Multicoupled Passive Transmission Lines and Josephson Junctions Based on FDTD," IEEE Transactions on Applied Superconductivity, vol. 30, no. 1, pp.1-7, Jan. 2020.
  28. Yan Shao, Xiao-Chun Li*, Ning Wang, Lin-Sheng Wu, Min Tang and Jun-Fa Mao, “Theoretical and Experimental Investigation of HMSIW-Based High-Speed Data Transmission System Using QPSK Scheme,IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, issue. 11, pp.1938-1947, Nov. 2018.
  29. Wang N., Li X. C*., Mao J. F., “High-Speed Interconnect System Using QPSK Scheme Based on Substrate Integrated Waveguide,”Journal of Circuits Systems and Computers, vol. 27, issue 1, pp:1-19, 2018.
  30. Yan Shao, Xiao-Chun Li, Lin-Sheng Wu, Jun-Fa Mao*, “A Wideband Millimeter-Wave Substrate Integrated Coaxial Line (SICL) Array for High-Speed Data Transmission,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, No.8, pp.2789-2800, Aug. 2017.
  31. Xin Tan, Xiao-Chun Li, Jun-Fa Mao, “Time-Domain Analysis of Noise Coupling Between Package and PCB Power/Ground Planes Based on WLP-FDTD,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, No.2, pp.269 - 275, Feb. 2017.
  32. Ning Wang, Xiao-Chun Li, Jun-fa Mao, “Improvement of Thermal Environment by Thermoelectric Coolers and Numerical Optimization of Thermal Performance,” IEEE Transactions on Electron Devices, vol. 62, no.8, pp.2579-2586, Aug. 2015.
  33. Xiao-chun Li, Jun-fa Mao, and Swaminathan Madhavan, “Transient Analysis of CMOS-Gate-Driven RLGC Interconnects Based on FDTD,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 4, pp. 574 – 583, Apr. 2011.
  34. Xiao-chun Li*, Mao, Jun-Fa, “An area-efficient very large scale integration architecture for modified Euclidean algorithm with dynamic storage technique,” International Journal of Electronics, 96(8), pp 837-842, Jun. 2009.
  35. Xiao-chun Li, Jun-fa Mao, Wen-yan Yin, “Dynamic Power Model of CMOS Gates Driving Transmission Lines Based on Fourier Analysis,” IEEE Transactions on Electron Devices, vol. 55, no. 2, pp.594-560, Feb. 2008.
  36. Xiao-chun Li, Mao Jun-fa, Huang Hui-fen and Liu Ye, “Global Interconnect Width and Spacing Optimization for Latency, Bandwidth and Power Dissipation,” IEEE Transactions on Electron Devices, 2005, vol. 52, no. 10, pp. 2272–2279, Oct. 2005.
  37. Xiao-chun Li and Jun-fa Mao, “Accurate Analysis of Interconnect Trees with Distributed RLC Model and Moment Matching”, IEEE Transactions on Microwave Theory and Techniques, vol. 52, no.9, pp. 2199 – 2206, Sept. 2004.
  38. Min Tang, Jun-Fa Mao and Xiao-chun Li, “Analysis of Interconnects with Frequency-Dependent Parameters by Differential Quadrature Method,” IEEE Microwave and Wireless Components Letters, vol.15, no.12, pp. 877-879, Dec. 2005.
  39. Hui-Fen Huang, Jun-Fa Mao, Xiao-chun Li, andZhengfan Li, “A photonic bandgap microstrip filter based on YBCO superconducting film,” IEEE Transactions on Applied Superconductivity, vol.15, no.3, pp. 3827–3830, Mar. 2005.
  40. Feng Cheng, Junfa Mao, and Xiao-chun Li, “Timing-driven placement based on path topology analysis,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E88, no. 8, pp. 2227–2230, Aug. 2005.
  41. Xiao-chun Li* and Junfa Mao, “A New Delay Model for Distributed RLC Trees,” Journal of Active and Passive Electronic Devices, vol. 1 pp. 259–271, Jan. 2006.
  42. Xiao-chun Li* and Junfa Mao, “An Area-Efficient Euclid Architecture with Low Latency,” Journal of Active and Passive Electronic Devices, vol. 1 pp. 221–227, Jan. 2006.
  43. 裴子溦,李晓春*,毛军发,“基于FDTD的约瑟夫森结与超导传输线协同分析方法,”电子学报,2019(录用)。
  44. Wei sun, Xiao-Chun Li*, Jun-Fa Mao,“Time-Domain Analysis of Noise in Power/Ground Planes with Narrow Slots Based on WLP-FDTD,”Journal of Shanghai Jiaotong University, vol. 53, no. 5, pp. 569-574, May 2019.
  45. 孙伟,李晓春*,毛军发, “基于WLP-FDTD 的带隙电源地平面噪声时域分析”, 上海交通大学学报,2019.5,第53卷,第5期,页码:569-574.
  46. Xiangting Wang, Xiao-Chun Li*, Jun-Fa Mao, “An EBG Microstrip Line Interconnect with Noise Suppression,”Journal of Shanghai Jiaotong University, vol. 53, no. 5, pp. 563-568, May 2019.
  47. 王香婷,李晓春*,毛军发,一种抑制同步开关噪声的EBG微带线互连,上海交通大学学报,2019.5,第53卷,第5期,页码:563-568.
  48. 李晓春,毛军发 , “基于基片集成波导的高速电子系统互连技术”, 中国科学:信息科学, 2018.9, 第48卷,第9期,页码:1165-1182. (CSCD)
  49. 唐旻,吴林晟李晓春*毛军发 “集成电路碳纳米管互连建模与特性研究”, 上海交通大学学报,2018年,第52卷,第10期,页码:1135-1141。
  50. Zhen Wei, Xiaochun Li, and Junfa Mao, “An accurate RLGC circuit model for dual tapered TSV structure,” Journal of Semiconductors, vol.35, no.9, pp. 136-142,Sept. 2014.
  51. Li-Mei Shen, Xiao-Chun Li*, Jun-Fa Mao , “16QAM high-speed transmission system using substrate integrated waveguide-type interconnect,” Journal of Shanghai Jiaotong University, vol.48, issue.10, pp. 1368-1371, Oct. 2014.
  52. 沈利梅,李晓春*,毛军发,基于基片集成波导互连的16进制正交振幅调制高速传输系统,上海交通大学学报,20144810),页码:1368-1371.
  53. 魏鑫,李晓春,邵妍,毛军发,“一种新型的双L型基片集成同轴互连阵列”,微波学报,2016, 8(4):59-64。(CSCD)
  54. 余佩,李晓春,王宁,毛军发,“基于WLP-FDTD的电源地网络时域快速分析方法,”《微波学报》,2016, 32(1):31-35。(CSCD)
  55. 余佩,李晓春,王宁,毛军发,“基于WLP-FDTD方法的传输线瞬态分析与计算,”《计算物理》,2016, 33(2):197-204。(CSCD)
  56. 魏鑫,李晓春,邵妍,毛军发.基于LTCC工艺的高速基片集成同轴互连阵列[J].电子技术,2016,45(09):18-22.
  57. 马晓剑,李晓春,王宁,毛军发.一种新型混合型超宽带EBG结构[J].微波学报,2016,32(02):30-34.
  58. 袁希望,李晓春,袁斌,王宁,毛军发,“基于半模基片集成波导的高速数据传输系统,”《微波学报》,2015, 31(5):41-45。(CSCD)
  59. 王宁,李晓春,毛军发,袁希望,邵妍,刘正,“基于坐标平面旋转的比幅测角方法,”《微波学报》,2014年9月,第30卷,第6期,页码:69-73。(CSCD)
  60. 吴业舟,李晓春.DDR2信号完整性分析与应用[J].河南科技,2013(08):1-2.
  61. 李晓春,毛军发,尹文言.考虑传输线效应的时钟线网动态功耗模型[J].中国科技论文在线,2008(01):65-69.
  62. 王晓,毛军发,李晓春,“一种基于标准单元芯片电源线网的静态电压降的分析方法”,《上海交通大学学报》,第41卷第8期,2007年8月,页码:1362-1365。
  63. 程锋,毛军发,李晓春;布局中的布线拥挤度估计及其优化《上海交通大学学报》,第40卷第3期,2006年3月,页码:369-372。
  64. 任英磊,毛军发,李晓春,“斜阶跃信号激励下的RLC互连线时延模型”,《上海交通大学学报》,第40卷第3期,2006年3月,页码:373-376。
  65. 黄章财,毛军发,李晓春,“互连线负载的有效电容计算模型”,《上海交通大学学报》,2004年10月,21: 115-117。
  66. 孙骥, 毛军发, 李晓春,“一种非零偏差时钟网布线算法”,《微电子学》,2005,35(3):293-296。
  67. 任杰, 毛军发, 李晓春,“一种适用于标准单元设计的缓冲器插入及布线算法”,《微电子学》,2005,35(3):286-289。
  68. 葛梁, 毛军发, 李晓春,“考虑信号上升/下降时间的IC 关键路径算法”,《微电子学》,2005,35(2):125-129。
  69. 任英磊,毛军发,李晓春.斜阶跃信号激励下的RLC互连线时延模型[J].微电子学,2005(03):290-292.
  70. 黄章财,毛军发,李晓春,“CMOS缓冲器的时延估算模型”,《微电子学》,2004,34(5):540-542。
  71. 陈彦丰,毛军发,李晓春,“基于RLC模型的树形互连线时延估算”,《微电子学》,2004,34(3):265-268。
  72. 李长辉, 毛军发,李晓春,“高速电路平行互连线时延估算与数值分析”,《微电子学》,2004,34(6):648-651。

Copyright© 高速互连与电磁兼容技术

技术支持: 维程互联